The implementation of the paper "Video Summarization using Deep Semantic Features" in ACCV'16 [arXiv]
git clone https://github.com/mayu-ot/vsum_dsf.git
You can install required python packages using conda:
conda env create -f vsum_dsf/environment.yml
Requirements:
- numpy=1.11
- scipy
- scikit learn
- chainer=2.0
Optional:
- scikit video ( for exporting video )
This code utilizes tools provided by M. Gygli et al. [1]. You can set it up by:
cd vsum_dsf
git clone https://github.com/gyglim/gm_submodular.git
cd gm_submodular
python setup.py install --user
[1] Gygli, Grabner & Van Gool. Video Summarization by Learning Submodular Mixtures of Objectives. CVPR 2015.
To test the model in the paper, download a data.zip
HERE and extract it in the folder vsum_dsf
.
The demo performs video summarization on the SumMe dataset (project page).
You can download the dataset as:
cd data/summe
wget https://data.vision.ee.ethz.ch/cvl/SumMe/SumMe.zip
unzip SumMe.zip
See the notebook or:
python script/summarize.py
python script/evaluate.py results/summe/smt_feat