Skip to content

Commit

Permalink
Finish vRelease-1
Browse files Browse the repository at this point in the history
  • Loading branch information
franzbischoff committed Aug 20, 2018
2 parents 111be14 + 65254e9 commit fc3f874
Show file tree
Hide file tree
Showing 94 changed files with 2,358 additions and 341 deletions.
3 changes: 2 additions & 1 deletion .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,5 @@
^README-.*\.png$
^\.httr-oauth$
^make\.R$
^CONDUCT\.md$
^CODE_OF_CONDUCT\.md$
^\.github/
9 changes: 6 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,18 +1,21 @@
Package: tsmp
Type: Package
Title: Time Series with Matrix Profile
Version: 0.2.13.9004
Version: 0.2.14.9009
Authors@R: c(
person("Francisco", "Bischoff", email = "[email protected]", role = c("aut", "cre"), comment = c(ORCID = "https://orcid.org/0000-0002-5301-8672")),
person("Michael", "Yeh", email = "[email protected]", role = c("res", "ccp", "ctb"))
person("Michael", "Yeh", email = "[email protected]", role = c("res", "ccp", "ctb"), comment = c(ORCID = "https://orcid.org/0000-0002-9807-2963")),
person("Diego", "Silva", email = "[email protected]", role = c("res", "ccp", "ctb"), comment = c(ORCID = "https://orcid.org/0000-0002-5184-9413")),
person("Yan", "Zhu", email = "[email protected]", role = c("res", "ccp", "ctb"))
)
Maintainer: Francisco Bischoff <[email protected]>
Description: A toolkit implementing the Matrix Profile concept that was created by CS-UCR <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>.
License: MIT + file LICENSE
URL: https://github.com/franzbischoff/tsmp
BugReports: https://github.com/franzbischoff/tsmp/issues
Depends: R (>= 2.10), beepr, doSNOW, parallel, foreach
Depends: R (>= 2.10), audio, doSNOW, parallel, foreach
Encoding: UTF-8
Language: en-US
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 6.1.0
Expand Down
4 changes: 3 additions & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

export(fast.movavg)
export(fast.movsd)
export(find.chains)
export(fluss)
export(fluss.cac)
export(fluss.extract)
Expand All @@ -14,10 +15,11 @@ export(mstomp.par)
export(sdts.f.score)
export(sdts.predict)
export(sdts.train)
export(simple.fast)
export(stamp)
export(stamp.par)
export(unconstrain.search)
import(beepr)
import(audio)
import(doSNOW)
import(foreach)
import(parallel)
7 changes: 6 additions & 1 deletion NEWS
Original file line number Diff line number Diff line change
@@ -1,7 +1,12 @@
<!-- NEWS.md is generated from NEWS.Rmd. Please edit that file -->
tsmp 0.2.30
tsmp 0.2.14
===========

- Added SiMPle algorithm for sound data.
- Added FLUSS algorithm.
- Added \[find.chains()\] to look for chains primitives.
- Changed dependency from beepr to audio (actually beepr depends on
audio, so less dependencies)
- Added a `NEWS.md` file to track changes to the package.

tsmp 0.2.x
Expand Down
6 changes: 5 additions & 1 deletion NEWS.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,12 @@ knitr::opts_chunk$set(
)
```

# tsmp 0.2.30
# tsmp 0.2.14

* Added SiMPle algorithm for sound data.
* Added FLUSS algorithm.
* Added [find.chains()] to look for chains primitives.
* Changed dependency from beepr to audio (actually beepr depends on audio, so less dependencies)
* Added a `NEWS.md` file to track changes to the package.

# tsmp 0.2.x
Expand Down
9 changes: 7 additions & 2 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,17 @@
NEWS
================
Francisco Bischoff
\- 18 Aug 2018
\- 20 Aug 2018

<!-- NEWS.md is generated from NEWS.Rmd. Please edit that file -->

# tsmp 0.2.30
# tsmp 0.2.14

- Added SiMPle algorithm for sound data.
- Added FLUSS algorithm.
- Added \[find.chains()\] to look for chains primitives.
- Changed dependency from beepr to audio (actually beepr depends on
audio, so less dependencies)
- Added a `NEWS.md` file to track changes to the package.

# tsmp 0.2.x
Expand Down
60 changes: 60 additions & 0 deletions R/find_chains.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
#' Find Time Series Chains
#'
#' Time Series Chains is a new primitive for time series data mining.
#'
#' @param matrices a result from STAMP or STOMP algorithms
#'
#' @return Returns `chains`, a `list` of chains founded with more than 2 patterns and `best`
#' with the best one.
#' @export
#' @references 1. Zhu Y, Imamura M, Nikovski D, Keogh E. Introducing time series chains: a new
#' primitive for time series data mining. Knowl Inf Syst. 2018 Jun 2;1–27.
#' @references Website: <https://sites.google.com/site/timeserieschain/>
#' @examples
#' w <- 50
#' data <- gait_data
#' mp <- stamp(data, window.size = w, exclusion.zone = 1/4, verbose = 0)
#' find.chains(mp)
#'
find.chains <- function(matrices) {
size <- length(matrices$rpi)
chain.length <- rep(1, size)
chain.set <- list()

k <- 1

for (i in 1:size) {
if (chain.length[i] == 1) {
j <- i
chain <- j

while (matrices$rpi[j] > 0 && matrices$lpi[matrices$rpi[j]] == j) {
j <- matrices$rpi[j]
chain.length[j] <- -1
chain.length[i] <- chain.length[i] + 1
chain <- c(chain, j)
}

if (length(chain) > 2) {
chain.set[[k]] <- chain
k <- k + 1
}
}
}

l <- max(chain.length)

best.chain <- NULL
mean <- Inf
for (i in 1:length(chain.set)) {
if (length(chain.set[[i]]) == l) {
n <- mean(matrices$rmp[chain.set[[i]]])
if (n < mean) {
mean <- n
best.chain <- chain.set[[i]]
}
}
}

return(list(chains = chain.set, best = best.chain))
}
3 changes: 2 additions & 1 deletion R/fluss.R
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ fluss.extract <- function(arc.counts, num.segments, window.size, exclusion.zone
#' Computes the arc count with edge correction (CAC).
#'
#' Original paper suggest using the classic statistical-process-control heuristic to set a threshold
#' where a semantic change may occur in CAC. This may be useful in realtime implementation as we don't
#' where a semantic change may occur in CAC. This may be useful in real-time implementation as we don't
#' know in advance the number of domain changes to look for. Please check original paper (1).
#'
#' @param profile.index the profile index for arc counting.
Expand All @@ -147,6 +147,7 @@ fluss.extract <- function(arc.counts, num.segments, window.size, exclusion.zone
#' w <- 210
#' mp <- mstomp(data, w, verbose = 0)
#' cac <- fluss.cac(mp$pi, w)
#'
#' \dontrun{
#' data <- fluss_data$walkjogrun$data
#' w <- fluss_data$walkjogrun$window # 80
Expand Down
9 changes: 9 additions & 0 deletions R/gait_data.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
#' Original data used in the Time Series Chain demo
#'
#' @docType data
#' @format A `matrix` with 904 rows and 1 column with the Y data from an accelerometer
#' @source \url{https://sites.google.com/site/timeserieschain/}
#'
#' @references 1. Zhu Y, Imamura M, Nikovski D, Keogh E. Introducing time series chains: a new primitive for time series data mining. Knowl Inf Syst. 2018 Jun 2;1–27.
#' @keywords datasets
"gait_data"
2 changes: 1 addition & 1 deletion R/m_guide_search.R
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
#'
#' Although this functions handles Multivariate Time Series, it can also be used to handle Univariate Time Series.
#'
#' @param data a `matrix` of `numeric`, where each colums is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param data a `matrix` of `numeric`, where each column is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param window.size an `int` with the size of the sliding window.
#' @param matrix.profile multidimensional matrix profile (matrix)
#' @param profile.index multidimensional profile index (from [mstomp()] or [mstomp.par()]).
Expand Down
2 changes: 1 addition & 1 deletion R/m_unconstrain_search.R
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
#'
#' Although this functions handles Multivariate Time Series, it can also be used to handle Univariate Time Series.
#'
#' @param data a `matrix` of `numeric`, where each colums is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param data a `matrix` of `numeric`, where each column is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param window.size an `int` with the size of the sliding window.
#' @param matrix.profile multidimensional matrix profile (from [mstomp()] or [mstomp.par()]).
#' @param profile.index multidimensional profile index (from [mstomp()] or [mstomp.par()]).
Expand Down
28 changes: 27 additions & 1 deletion R/misc.R
Original file line number Diff line number Diff line change
Expand Up @@ -70,9 +70,35 @@ fast.movavg <- function(data, n) {
std <- function(x) {
sdx <- stats::sd(x)

if (sdx == 0)
if (sdx == 0) {
return(sdx)
}

return(sqrt((length(x) - 1) / length(x)) * sdx)
}

#' Play sound with `audio`
#'
#' @param data sound data provided by this package
#'
#' @keywords internal
#' @import audio
beep <- function(data) {
if (!(is.null(audio::audio.drivers()) || nrow(audio::audio.drivers()) == 0)) {
tryCatch({
audio::play(data)
},
error = function(cond) {
message("Failed to play audio alert")
message(cond)
invisible()
},
warning = function(cond) {
message("Something went wrong playing audio alert")
message(cond)
invisible()
}
)
}
invisible()
}
6 changes: 3 additions & 3 deletions R/mstomp.R
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
#' Although this functions handles Multivariate Time Series, it can also be used to handle Univariate Time Series.
#' `verbose` changes how much information is printed by this function; `0` means nothing, `1` means text, `2` means text and sound.
#'
#' @param data a `matrix` of `numeric`, where each colums is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param data a `matrix` of `numeric`, where each column is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param window.size an `int` with the size of the sliding window.
#' @param must.dim an `int` or `vector` of which dimensions to forcibly include (default is `NULL`).
#' @param exc.dim an `int` or `vector` of which dimensions to exclude (default is `NULL`).
Expand Down Expand Up @@ -114,7 +114,7 @@ mstomp <- function(data, window.size, must.dim = NULL, exc.dim = NULL, exclusion
on.exit(close(pb))
}
if (verbose > 1) {
on.exit(beepr::beep(), TRUE)
on.exit(beep(sounds[[1]]), TRUE)
}

## initialization
Expand Down Expand Up @@ -198,7 +198,7 @@ mstomp <- function(data, window.size, must.dim = NULL, exc.dim = NULL, exclusion

if (n.dim > 1) {
dist.pro.sort <- t(apply(distance.profile, 1, sort))
} # sort by row, put all -Inf to the first columns
} # sort by row, put all -Inf to the first column
else {
dist.pro.sort <- distance.profile
}
Expand Down
7 changes: 3 additions & 4 deletions R/mstomp_par.R
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
#' Although this functions handles Multivariate Time Series, it can also be used to handle Univariate Time Series.
#' `verbose` changes how much information is printed by this function; `0` means nothing, `1` means text, `2` means text and sound.
#'
#' @param data a `matrix` of `numeric`, where each colums is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param data a `matrix` of `numeric`, where each column is a time series. Accepts `vector` (see details), `list` and `data.frame` too.
#' @param window.size an `int`. Size of the sliding window.
#' @param must.dim an `int` or `vector` of which dimensions to forcibly include (default is `NULL`).
#' @param exc.dim an `int` or `vector` of which dimensions to exclude (default is `NULL`).
Expand All @@ -29,9 +29,8 @@
#'
#' @examples
#' # using all dimensions
#' Sys.sleep(1) # sometimes sleep is needed if you run parallel multiple times in a row
#' mp <- mstomp.par(toy_data$data[1:100,], 30, verbose = 0)
#' @import beepr doSNOW foreach parallel
#' @import doSNOW foreach parallel

mstomp.par <- function(data, window.size, must.dim = NULL, exc.dim = NULL, exclusion.zone = 1 / 2, verbose = 2, n.workers = 2) {
eps <- .Machine$double.eps^0.5
Expand Down Expand Up @@ -140,7 +139,7 @@ mstomp.par <- function(data, window.size, must.dim = NULL, exc.dim = NULL, exclu
on.exit(close(pb), TRUE)
}
if (verbose > 1) {
on.exit(beepr::beep(), TRUE)
on.exit(beep(sounds[[1]]), TRUE)
}

## initialize variable
Expand Down
2 changes: 1 addition & 1 deletion R/sdts_predict.R
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ sdts.predict <- function(model, data, window.size) {
#' `beta` is used to balance F-score towards recall (`>1`) or precision (`<1`).
#'
#' @param gtruth a `vector` of `logical`. Ground truth annotation.
#' @param pred a `vector` of `logical`. Predictied annotation from [sdts.predict()]
#' @param pred a `vector` of `logical`. Predicted annotation from [sdts.predict()]
#' @param beta a `numeric`. See details. (default is `1`).
#'
#' @return Returns a `list` with `f.score`, `precision` and `recall`.
Expand Down
6 changes: 3 additions & 3 deletions R/sdts_train.R
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ sdts.train <- function(data, label, window.size, beta = 1, pat.max = Inf, parall
on.exit(close(pb))
}
if (verbose > 1) {
on.exit(beepr::beep(), TRUE)
on.exit(beep(sounds[[1]]), TRUE)
}

for (i in 1:n.window.size) {
Expand Down Expand Up @@ -342,7 +342,7 @@ sdts.train <- function(data, label, window.size, beta = 1, pat.max = Inf, parall
#' @param beta a number that balance the F-Score. Beta > 1 towards recall, < towards precision
#' @param window.size an integer with the sliding window size
#'
#' @return Returns the best threashold and its F-Score
#' @return Returns the best threshold and its F-Score
#'
#' @keywords internal
#'
Expand Down Expand Up @@ -384,7 +384,7 @@ golden.section <- function(dist.pro, label, pos.st, pos.ed, beta, window.size) {
#' @param window.size an integer with the sliding window size
#' @param fit.idx an integer with the index of the current threshold
#'
#' @return Returns the best threashold and its F-Score
#' @return Returns the best threshold and its F-Score
#'
#' @keywords internal

Expand Down
Loading

0 comments on commit fc3f874

Please sign in to comment.