-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test: add integration test to bernstein density and functions
- Loading branch information
Showing
1 changed file
with
204 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
#!/usr/bin/env python3 | ||
"""The module is a test suite for numpyro submodule.""" | ||
|
||
|
||
############################################################################### | ||
# Imports ##################################################################### | ||
############################################################################### | ||
|
||
|
||
from dataclasses import dataclass, field | ||
from typing import Any, no_type_check | ||
|
||
import jax.numpy as jnp | ||
import numpy as np | ||
import numpyro | ||
from hypothesis import given, settings | ||
from hypothesis import strategies as st | ||
from jax import random | ||
from numpyro.infer import MCMC, NUTS | ||
from scipy import stats | ||
from scipy.spatial.distance import jensenshannon | ||
|
||
from banquo import ( | ||
array, | ||
bernstein_pdf, | ||
extract_minmax_parameters, | ||
minmax_normalization, | ||
shape_handle_wT_posterior, | ||
shape_handle_x, | ||
) | ||
from banquo.numpyro import bernstein_density | ||
|
||
|
||
############################################################################### | ||
# Numpyro configuration ###################################################### | ||
############################################################################### | ||
|
||
|
||
numpyro.set_platform("cpu") | ||
numpyro.set_host_device_count(4) | ||
|
||
|
||
############################################################################### | ||
# Marginal distributions ##################################################### | ||
############################################################################### | ||
|
||
|
||
DISTRIBUTIONS: dict[str, Any] = { | ||
"norm": stats.norm(0, 1), | ||
"genextreme": stats.genextreme(c=0, loc=0, scale=1), | ||
"expon": stats.expon(1), | ||
"beta": stats.beta(10, 10), | ||
} | ||
SUPPORTS: dict[str, Any] = { | ||
"norm": np.asarray((-np.inf, np.inf)), | ||
"genextreme": np.asarray((-np.inf, np.inf)), | ||
"expon": np.asarray((0, np.inf)), | ||
"beta": np.asarray((0, 1)), | ||
} | ||
SEED: int = 37 # Seed for pseudo-random generation | ||
JSD_THRESHOLD: float = 0.05 # Threshold for Jensen-Shannon divergence (JSD) | ||
PROB_JSD_LESS_THAN_THRESHOLD = 0.95 # Probability that lpdf of observation | ||
# is similar to true distribution under JSD | ||
|
||
|
||
############################################################################### | ||
# Auxiliary objects for marginal models ###################################### | ||
############################################################################### | ||
|
||
|
||
@dataclass | ||
class ScipyBeta: | ||
"""A Scipy interface for a Beta distribution. | ||
This protocol outlines the required attributes and methods for working | ||
with a Beta distribution, including the log probability density function | ||
(lpdf), probability density function (pdf),cumulative distribution | ||
function (cdf) and inverse cumulative distribution function (icdf) | ||
or quantile function. | ||
Parameters | ||
---------- | ||
a : array | ||
The first shape parameter (alpha) of the Beta distribution. | ||
It is an array to allow for vectorized operations over multiple | ||
distributions. | ||
b: array | ||
The second shape parameter (beta) of the Beta distribution. | ||
Similar to `a`, it is an array to allow for vectorized operations | ||
over multiple distributions. | ||
""" | ||
|
||
a: array = field() | ||
b: array = field() | ||
|
||
def lpdf(self, x: array) -> array: | ||
"""Calculate the log probability density function of the beta distribution.""" | ||
return stats.beta(self.a, self.b).logpdf(x) | ||
|
||
def pdf(self, x: array) -> array: | ||
"""Calculate the probability density function of the beta distribution.""" | ||
return stats.beta(self.a, self.b).pdf(x) | ||
|
||
def cdf(self, x: array) -> array: | ||
"""Calculate the cumulative distribution function of the beta distribution.""" | ||
return stats.beta(self.a, self.b).cdf(x) | ||
|
||
def icdf(self, x: array) -> array: | ||
"""Calculate the quantile function of the beta distribution.""" | ||
return stats.beta.ppf(self.a, self.b)(x) | ||
|
||
|
||
def bernstein_density_model(x: array, k: int) -> None: | ||
"""Numpyro fixture to use in bernstein density tests.""" | ||
|
||
n, d = x.shape | ||
|
||
zeta = 0.3 * jnp.ones((d, k)) | ||
|
||
bernstein_density(x, zeta) | ||
|
||
|
||
############################################################################### | ||
# Tests for marginal models ################################################## | ||
############################################################################### | ||
|
||
|
||
@no_type_check | ||
@settings(deadline=None, max_examples=10) | ||
@given( | ||
st.sampled_from(list(DISTRIBUTIONS.keys())), | ||
st.integers(min_value=5, max_value=30), | ||
st.integers(min_value=1, max_value=5), | ||
st.integers(min_value=50, max_value=200), | ||
) | ||
def test_bernstein_density_approximation( | ||
dist_name: str, k: int, d: int, n: int | ||
) -> None: | ||
"""Test if bernstein density approximate true pdf for different supports. | ||
Parameters | ||
---------- | ||
dist_name : str | ||
Distribution name. | ||
k : int | ||
Number of Bernstein basis. | ||
d : int | ||
Number of dimensions. | ||
n : int | ||
Number of samples. | ||
""" | ||
seed: int = SEED | ||
threshold: float = JSD_THRESHOLD | ||
prob_jsd_less_than_threshold: float = PROB_JSD_LESS_THAN_THRESHOLD | ||
|
||
dist = DISTRIBUTIONS[dist_name] | ||
support = SUPPORTS[dist_name] | ||
|
||
np.random.seed(seed=seed) | ||
sample = dist.rvs((n, d)) | ||
|
||
coeffs = np.apply_along_axis( | ||
extract_minmax_parameters, 0, sample, support=support | ||
) # Shape: (2, d) | ||
|
||
norm_coeff = coeffs[1, :] | ||
|
||
norm_coeff = norm_coeff[None, None, :] # Shape: (1, 1, d) | ||
|
||
x = np.apply_along_axis(minmax_normalization, 0, sample) # Shape: (n, d) | ||
|
||
rng_key = random.PRNGKey(seed=seed) | ||
|
||
num_samples = 2000 | ||
num_chains = 4 | ||
|
||
mcmc = MCMC( | ||
NUTS(bernstein_density_model), | ||
num_warmup=num_samples // 2, | ||
num_samples=num_samples, | ||
num_chains=num_chains, | ||
) | ||
mcmc.run(rng_key, x=jnp.asarray(x), k=k) | ||
|
||
posterior_samples = mcmc.get_samples() | ||
|
||
w = np.asarray(posterior_samples["w"]) # Shape: (s, d, k) | ||
|
||
pdf = np.squeeze( | ||
bernstein_pdf( | ||
ScipyBeta, shape_handle_x(x), shape_handle_wT_posterior(w), keepdims=True | ||
), | ||
axis=(0, 3), | ||
) # Shape: (s, n, d) | ||
|
||
pdf_norm = pdf * norm_coeff # Shape: (s, n, d) | ||
|
||
res = dist.pdf(sample)[None, :, :] # Shape: (1, n, d) | ||
|
||
jsd = jensenshannon(pdf_norm, res, axis=1) ** 2 # Shape: (s, d) | ||
|
||
prob_less_than_threshold = np.mean(jsd < threshold, axis=0) # Shape: (d) | ||
|
||
assert np.all(prob_less_than_threshold > prob_jsd_less_than_threshold) |