-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
MTScheduler: Add BLOCK-T345 json for science program
- Loading branch information
1 parent
99b6bc7
commit 13a58bf
Showing
3 changed files
with
324 additions
and
0 deletions.
There are no files selected for viewing
198 changes: 198 additions & 0 deletions
198
Scheduler/feature_scheduler/maintel/fbs_config_sit_survey_block_t345.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
# This file is part of ts_config_ocs. | ||
# | ||
# Developed for the Vera Rubin Observatory Telescope and Site System. | ||
# This product includes software developed by the LSST Project | ||
# (https://www.lsst.org). | ||
# See the COPYRIGHT file at the top-level directory of this distribution | ||
# for details of code ownership. | ||
# | ||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <https://www.gnu.org/licenses/>. | ||
|
||
import numpy as np | ||
from rubin_scheduler.scheduler import basis_functions, detailers, example, features | ||
from rubin_scheduler.scheduler.schedulers import CoreScheduler | ||
from rubin_scheduler.scheduler.surveys import BlobSurvey | ||
from rubin_scheduler.scheduler.utils import CurrentAreaMap, Footprint | ||
from rubin_scheduler.site_models import Almanac | ||
|
||
|
||
def get_scheduler(): | ||
nside = 32 | ||
science_program = "BLOCK-T345" | ||
survey_start = 60653.5 | ||
camera_rot_limits = [-80, 80] | ||
|
||
map_band_to_filtername = { | ||
"u": "u_02", | ||
"g": "g_01", | ||
"r": "r_03", | ||
"i": "i_06", | ||
"z": "z_03", | ||
"y": "y_04", | ||
} | ||
|
||
filtername = map_band_to_filtername["r"] | ||
filtername2 = map_band_to_filtername["g"] | ||
|
||
# Masks are fine - no band specific information. | ||
mask_basis_functions = example.standard_masks( | ||
nside=nside, | ||
# Let's avoid the moon by this many degrees | ||
moon_distance=30.0, | ||
# Erik says to make wind speed minor so set limit high | ||
wind_speed_maximum=50.0, | ||
# I think these are the values appropriate for alt limits now? | ||
min_alt=40, | ||
max_alt=70, | ||
min_az=0, | ||
max_az=360, | ||
# Avoid going into avoidance regions 30 minutes into the future | ||
shadow_minutes=30, | ||
) | ||
# Mask basis functions have zero weights. | ||
mask_basis_functions_weights = [0 for mask in mask_basis_functions] | ||
|
||
# Set up footprint stuff here instead of in rubin_scheduler. | ||
# Use the Almanac to find the position of the sun at the start of survey. | ||
almanac = Almanac(mjd_start=survey_start) | ||
sun_moon_info = almanac.get_sun_moon_positions(survey_start) | ||
sun_ra_start = sun_moon_info["sun_RA"].copy() | ||
# So this is a dictionary of filternames : int. | ||
filterdict = {} | ||
for i, f in enumerate(map_band_to_filtername.values()): | ||
filterdict[f] = i | ||
footprints = Footprint( | ||
filters=filterdict, | ||
mjd_start=survey_start, | ||
sun_ra_start=sun_ra_start, | ||
nside=nside, | ||
) | ||
# need to remap this to filtername not band | ||
footprint = CurrentAreaMap(nside=nside) | ||
footprint_hp, labels = footprint.return_maps() | ||
new_dtype = np.dtype([(map_band_to_filtername[f], "<f8") for f in "ugrizy"]) | ||
footprint_hp_filter = footprint_hp.astype(new_dtype) | ||
for f in footprint_hp_filter.dtype.names: | ||
footprints.set_footprint(f, footprint_hp_filter[f]) | ||
|
||
# Now set up basis functions | ||
m5_weight = 6.0 | ||
footprint_weight = 1.5 | ||
slewtime_weight = 3.0 | ||
stayfilter_weight = 3.0 | ||
repeat_weight = -20 | ||
# Add the same basis functions, but M5 and footprint | ||
# basis functions need to be added twice, with half the weight. | ||
rf1 = example.simple_rewards( | ||
footprints=footprints, | ||
filtername=filtername, | ||
nside=nside, | ||
m5_weight=m5_weight / 2.0, | ||
footprint_weight=footprint_weight / 2.0, | ||
slewtime_weight=slewtime_weight, | ||
stayfilter_weight=stayfilter_weight, | ||
repeat_weight=repeat_weight, | ||
) | ||
rf2 = example.simple_rewards( | ||
footprints=footprints, | ||
filtername=filtername2, | ||
nside=nside, | ||
m5_weight=m5_weight / 2.0, | ||
footprint_weight=footprint_weight / 2.0, | ||
slewtime_weight=0, | ||
stayfilter_weight=0, | ||
repeat_weight=0, | ||
) | ||
# Now clean up and combine these - and remove the separate | ||
# BasisFunction for FilterLoadedBasisFunction. | ||
reward_functions = [(i[0], i[1]) for i in rf1 if i[1] > 0] + [ | ||
(i[0], i[1]) for i in rf2 if i[1] > 0 | ||
] | ||
# Remove the M5Diff basis functions as unusable at present | ||
reward_functions = [ | ||
(bf, weight) | ||
for (bf, weight) in reward_functions | ||
if not isinstance(bf, basis_functions.M5DiffBasisFunction) | ||
] | ||
|
||
# unpack the basis functions and weights | ||
reward_basis_functions_weights = [val[1] for val in reward_functions] | ||
reward_basis_functions = [val[0] for val in reward_functions] | ||
|
||
# Set up blob surveys. | ||
pair_time = 20 | ||
if filtername2 is None: | ||
survey_name = "simple pair %i, %s" % (pair_time, filtername) | ||
else: | ||
survey_name = "simple pair %i, %s%s" % (pair_time, filtername, filtername2) | ||
|
||
# Set up detailers for each requested observation. | ||
detailer_list = [] | ||
# Avoid camera rotator limits. | ||
detailer_list.append( | ||
detailers.CameraRotDetailer( | ||
min_rot=np.min(camera_rot_limits), max_rot=np.max(camera_rot_limits) | ||
) | ||
) | ||
# Convert rotTelPos to rotSkyPos_desired | ||
detailer_list.append(detailers.Rottep2RotspDesiredDetailer(telescope="comcam")) | ||
# Reorder visits in a blob so that closest to current altitude is first. | ||
detailer_list.append(detailers.CloseAltDetailer()) | ||
# Sets a flush-by date to avoid running into prescheduled visits. | ||
detailer_list.append(detailers.FlushForSchedDetailer()) | ||
# Add a detailer to label visits as either first or second of the pair. | ||
if filtername2 is not None: | ||
detailer_list.append(detailers.TakeAsPairsDetailer(filtername=filtername2)) | ||
|
||
# Set up the survey. | ||
ignore_obs = ["DD"] | ||
|
||
BlobSurvey_params = { | ||
"slew_approx": 7.5, | ||
"filter_change_approx": 140.0, | ||
"read_approx": 2.4, | ||
"flush_time": pair_time * 3, | ||
"smoothing_kernel": None, | ||
"nside": nside, | ||
"seed": 42, | ||
"dither": True, | ||
"twilight_scale": False, | ||
} | ||
|
||
pair_survey = BlobSurvey( | ||
reward_basis_functions + mask_basis_functions, | ||
reward_basis_functions_weights + mask_basis_functions_weights, | ||
filtername1=filtername, | ||
filtername2=filtername2, | ||
exptime=150, | ||
ideal_pair_time=pair_time, | ||
survey_name=survey_name, | ||
ignore_obs=ignore_obs, | ||
nexp=1, | ||
detailers=detailer_list, | ||
science_program=science_program, | ||
**BlobSurvey_params, | ||
) | ||
|
||
# Tucking this here so we can look at how many observations | ||
# recorded for this survey and what was the last one. | ||
pair_survey.extra_features["ObsRecorded"] = features.NObsCount() | ||
pair_survey.extra_features["LastObs"] = features.LastObservation() | ||
|
||
scheduler = CoreScheduler([pair_survey], nside=nside) | ||
return nside, scheduler | ||
|
||
|
||
if __name__ == "config": | ||
nside, scheduler = get_scheduler() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
{ | ||
"name": "AOSSurveyMode", | ||
"program": "BLOCK-T345", | ||
"constraints": [], | ||
"scripts": [ | ||
{ | ||
"name": "maintel/track_target.py", | ||
"standard": true, | ||
"parameters": { | ||
"target_name": "$name", | ||
"slew_icrs": { | ||
"ra": "$ra", | ||
"dec": "$dec" | ||
}, | ||
"rot_value": "$rot_sky", | ||
"rot_type": "Sky", | ||
"az_wrap_strategy": "NOUNWRAP" | ||
} | ||
}, | ||
{ | ||
"name": "maintel/close_loop_comcam.py", | ||
"standard": true, | ||
"parameters": { | ||
"exposure_time": 15, | ||
"max_iter": 1, | ||
"gain_sequence": [ | ||
0.75 | ||
], | ||
"mode": "FAM", | ||
"program": "$program", | ||
"note": "closed_loop_aos_survey_mode", | ||
"reason": "aos_survey_mode", | ||
"filter": "$band_filter", | ||
"used_dofs": [ | ||
0, | ||
1, | ||
2, | ||
3, | ||
4, | ||
5, | ||
6, | ||
7, | ||
8, | ||
9, | ||
10, | ||
11, | ||
12, | ||
13, | ||
14, | ||
17, | ||
18, | ||
19, | ||
20, | ||
21, | ||
22, | ||
23, | ||
28, | ||
29, | ||
30, | ||
31, | ||
32, | ||
33, | ||
34, | ||
37, | ||
38, | ||
39, | ||
40, | ||
41, | ||
42, | ||
45, | ||
46 | ||
], | ||
"apply_corrections": true, | ||
"use_ocps": true | ||
} | ||
} | ||
], | ||
"configuration_schema": "" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
maintel: | ||
driver_type: feature_scheduler | ||
mode: ADVANCE | ||
startup_type: COLD | ||
startup_database: /home/saluser/rubin_sim_data/fbs_observation_database_maintel.sql | ||
instrument_name: CCCamera | ||
models: | ||
observatory_model: | ||
camera: | ||
filter_max_changes_burst_num: 1000000 | ||
filter_max_changes_avg_num: 30000 | ||
optics_loop_corr: | ||
tel_optics_cl_alt_limit: | ||
- 0 | ||
- 60 | ||
- 90 | ||
park: | ||
filter_position: r_03 | ||
driver_configuration: | ||
parameters: | ||
night_boundary: -10.0 | ||
stop_tracking_observing_script_name: maintel/stop_tracking.py | ||
feature_scheduler_driver_configuration: | ||
observation_database_name: /home/saluser/rubin_sim_data/fbs_observation_database_maintel.sql | ||
scheduler_config: /net/obs-env/auto_base_packages/ts_config_ocs/Scheduler/feature_scheduler/maintel/fbs_config_sit_survey_block_t345.py | ||
telemetry: | ||
streams: | ||
- name: seeing | ||
efd_table: lsst.sal.DIMM.logevent_dimmMeasurement | ||
efd_columns: | ||
- fwhm | ||
efd_delta_time: 300.0 | ||
fill_value: 1.0 | ||
- name: wind_speed | ||
efd_table: lsst.sal.ESS.airFlow | ||
efd_columns: | ||
- speed | ||
efd_delta_time: 300.0 | ||
fill_value: 0.0 | ||
csc_index: 301 | ||
- name: wind_direction | ||
efd_table: lsst.sal.ESS.airFlow | ||
efd_columns: | ||
- direction | ||
efd_delta_time: 300.0 | ||
fill_value: 0.0 | ||
csc_index: 301 |