-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Files + First ideas on ope semantics
- Loading branch information
Nicolas Nardino
committed
Jan 5, 2024
1 parent
167a7b0
commit 6d384ef
Showing
5 changed files
with
2,841 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
From Equations Require Import Equations. | ||
From gitrees Require Import gitree. | ||
From gitrees.input_lang_callcc Require Import lang interp. | ||
Require Import gitrees.lang_generic_sem. | ||
Require Import Binding.Lib Binding.Set Binding.Env. | ||
|
||
Open Scope stdpp_scope. | ||
|
||
Section hom. | ||
Context {sz : nat}. | ||
Context {rs : gReifiers sz}. | ||
Context {subR : subReifier reify_io rs}. | ||
Notation F := (gReifiers_ops rs). | ||
Notation IT := (IT F natO). | ||
Notation ITV := (ITV F natO). | ||
|
||
Definition HOM : ofe := @sigO (IT -n> IT) IT_hom. | ||
|
||
Global Instance HOM_hom (κ : HOM) : IT_hom (`κ). | ||
Proof. | ||
apply (proj2_sig κ). | ||
Qed. | ||
|
||
Program Definition HOM_id : HOM := exist _ idfun _. | ||
Next Obligation. | ||
apply _. | ||
Qed. | ||
|
||
Lemma HOM_ccompose (f g : HOM) : | ||
∀ α, `f (`g α) = (`f ◎ `g) α. | ||
Proof. | ||
intro; reflexivity. | ||
Qed. | ||
|
||
Program Definition HOM_compose (f g : HOM) : HOM := exist _ (`f ◎ `g) _. | ||
Next Obligation. | ||
intros f g; simpl. | ||
apply _. | ||
Qed. | ||
|
||
Lemma HOM_compose_ccompose (f g h : HOM) : | ||
h = HOM_compose f g -> | ||
`f ◎ `g = `h. | ||
Proof. intros ->. done. Qed. | ||
|
||
Program Definition IFSCtx_HOM α β : HOM := exist _ (λne x, IFSCtx α β x) _. | ||
Next Obligation. | ||
intros; simpl. | ||
apply _. | ||
Qed. | ||
|
||
Program Definition NatOpRSCtx_HOM {S : Set} (op : nat_op) | ||
(α : @interp_scope F natO _ S -n> IT) (env : @interp_scope F natO _ S) | ||
: HOM := exist _ (interp_natoprk rs op α (λne env, idfun) env) _. | ||
Next Obligation. | ||
intros; simpl. | ||
apply _. | ||
Qed. | ||
|
||
Program Definition NatOpLSCtx_HOM {S : Set} (op : nat_op) | ||
(α : IT) (env : @interp_scope F natO _ S) | ||
(Hv : AsVal α) | ||
: HOM := exist _ (interp_natoplk rs op (λne env, idfun) (constO α) env) _. | ||
Next Obligation. | ||
intros; simpl. | ||
apply _. | ||
Qed. | ||
|
||
Program Definition ThrowLSCtx_HOM {S : Set} | ||
(α : @interp_scope F natO _ S -n> IT) | ||
(env : @interp_scope F natO _ S) | ||
: HOM := exist _ ((interp_throwlk rs (λne env, idfun) α env)) _. | ||
Next Obligation. | ||
intros; simpl. | ||
apply _. | ||
Qed. | ||
|
||
Program Definition ThrowRSCtx_HOM {S : Set} | ||
(β : IT) (env : @interp_scope F natO _ S) | ||
(Hv : AsVal β) | ||
: HOM := exist _ (interp_throwrk rs (constO β) (λne env, idfun) env) _. | ||
Next Obligation. | ||
intros; simpl. | ||
simple refine (IT_HOM _ _ _ _ _); intros; simpl. | ||
- solve_proper_please. | ||
- destruct Hv as [? <-]. | ||
rewrite ->2 get_val_ITV. | ||
simpl. by rewrite get_fun_tick. | ||
- destruct Hv as [x Hv]. | ||
rewrite <- Hv. | ||
rewrite -> get_val_ITV. | ||
simpl. | ||
rewrite get_fun_vis. | ||
repeat f_equiv. | ||
intro; simpl. | ||
rewrite <- Hv. | ||
by rewrite -> get_val_ITV. | ||
- destruct Hv as [? <-]. | ||
rewrite get_val_ITV. | ||
simpl. | ||
by rewrite get_fun_err. | ||
Qed. | ||
|
||
Program Definition OutputSCtx_HOM {S : Set} | ||
(env : @interp_scope F natO _ S) | ||
: HOM := exist _ ((interp_outputk rs (λne env, idfun) env)) _. | ||
Next Obligation. | ||
intros; simpl. | ||
apply _. | ||
Qed. | ||
|
||
Program Definition AppRSCtx_HOM {S : Set} | ||
(α : @interp_scope F natO _ S -n> IT) | ||
(env : @interp_scope F natO _ S) | ||
: HOM := exist _ (interp_apprk rs α (λne env, idfun) env) _. | ||
Next Obligation. | ||
intros; simpl. | ||
apply _. | ||
Qed. | ||
|
||
Program Definition AppLSCtx_HOM {S : Set} | ||
(β : IT) (env : @interp_scope F natO _ S) | ||
(Hv : AsVal β) | ||
: HOM := exist _ (interp_applk rs (λne env, idfun) (constO β) env) _. | ||
Next Obligation. | ||
intros; simpl. | ||
apply _. | ||
Qed. | ||
|
||
End hom. |
Oops, something went wrong.