Skip to content

Commit

Permalink
Merge pull request #4 from logsem/delim_staging
Browse files Browse the repository at this point in the history
Delimited continuations
  • Loading branch information
co-dan authored Jun 23, 2024
2 parents 6ce5299 + b91709c commit 421eb90
Show file tree
Hide file tree
Showing 14 changed files with 3,050 additions and 861 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ to the code structure.
- `examples/input_lang/` -- formalization of the language with io, the soundness and adequacy
- `examples/affine_lang/` -- formalization of the affine language, type safety of the language interoperability
- `examples/input_lang_callcc/` -- formalization of the language with io, throw and call/cc, the soundness and adequacy
- `examples/delim_lang/` -- formalization shift/reset effects, of a language with delimited continuations and its soundness
- `examples/delim_lang/` -- formalization of the language with shift/reset and its soundness/adequacy wrt abstract machine semantics
- `prelude.v` -- some stuff that is missing from Iris
- `lang_generic.v` -- generic facts about languages with binders and their interpretations, shared by `input_lang` and `affine_lang`

Expand Down
8 changes: 7 additions & 1 deletion _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -24,22 +24,28 @@ theories/gitree/reify.v
theories/gitree/greifiers.v
theories/gitree/reductions.v
theories/gitree/weakestpre.v
theories/hom.v
theories/gitree.v

theories/program_logic.v

theories/effects/store.v
theories/effects/callcc.v
theories/effects/io_tape.v
theories/effects/delim.v

theories/lib/pairs.v
theories/lib/while.v
theories/lib/factorial.v
theories/lib/iter.v
theories/lib/iter.v

theories/examples/delim_lang/lang.v
theories/examples/delim_lang/typing.v
theories/examples/delim_lang/interp.v
theories/examples/delim_lang/hom.v
theories/examples/delim_lang/example.v
theories/examples/delim_lang/logpred.v
theories/examples/delim_lang/logrel.v

theories/examples/input_lang_callcc/lang.v
theories/examples/input_lang_callcc/interp.v
Expand Down
299 changes: 299 additions & 0 deletions theories/effects/delim.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,299 @@
(** * Representation of delimited continuations *)
From gitrees Require Import prelude gitree.
From iris.algebra Require Import list.

(** * State, corresponding to a meta-continuation *)
Definition stateF : oFunctor := (listOF (▶ ∙ -n> ▶ ∙))%OF.

#[local] Instance state_inhabited : Inhabited (stateF ♯ unitO).
Proof. apply _. Qed.

#[local] Instance state_cofe X `{!Cofe X} : Cofe (stateF ♯ X).
Proof. apply _. Qed.

(* We store a list of meta continuations in the state. *)

(** * Signatures *)

(** Bind the innermost continuation *)
Program Definition shiftE : opInterp :=
{|
Ins := ((▶ ∙ -n> ▶ ∙) -n> ▶ ∙);
Outs := (▶ ∙);
|}.

(** Delimit the continuation *)
Program Definition resetE : opInterp :=
{|
Ins := (▶ ∙);
Outs := (▶ ∙);
|}.

(** Explicitly pop a continuation from the meta-continuation and jump
to it *)
Program Definition popE : opInterp :=
{|
Ins := (▶ ∙);
Outs := Empty_setO;
|}.

(** Applies continuation, pushes outer context in meta *)
Program Definition appContE : opInterp :=
{|
Ins := (▶ ∙ * (▶ (∙ -n> ∙)));
Outs := ▶ ∙;
|} .

Definition delimE := @[shiftE; resetE; popE;appContE].

Notation op_shift := (inl ()).
Notation op_reset := (inr (inl ())).
Notation op_pop := (inr (inr (inl ()))).
Notation op_app_cont := (inr (inr (inr (inl ())))).

Section reifiers.
Context {X} `{!Cofe X}.
Notation state := (stateF ♯ X).

Definition reify_shift : ((laterO X -n> laterO X) -n> laterO X) *
state * (laterO X -n> laterO X) →
option (laterO X * state) :=
λ '(f, σ, k), Some ((f k): laterO X, σ : state).
#[export] Instance reify_shift_ne :
NonExpansive (reify_shift :
prodO (prodO ((laterO X -n> laterO X) -n> laterO X) state)
(laterO X -n> laterO X) →
optionO (prodO (laterO X) state)).
Proof. intros ?[[]][[]][[]]. simpl in *. repeat f_equiv; auto. Qed.

Definition reify_reset : (laterO X) * state * (laterO X -n> laterO X) →
option (laterO X * state) :=
λ '(e, σ, k), Some (e, (k :: σ)).
#[export] Instance reify_reset_ne :
NonExpansive (reify_reset :
prodO (prodO (laterO X) state) (laterO X -n> laterO X) →
optionO (prodO (laterO X) state)).
Proof. intros ?[[]][[]][[]]. simpl in *. by repeat f_equiv. Qed.


Definition reify_pop : (laterO X) * state * (Empty_setO -n> laterO X) →
option (laterO X * state) :=
λ '(e, σ, _),
match σ with
| [] => Some (e, σ)
| k' :: σ' => Some (k' e, σ')
end.
#[export] Instance reify_pop_ne :
NonExpansive (reify_pop :
prodO (prodO (laterO X) state) (Empty_setO -n> laterO X) →
optionO (prodO (laterO X) state)).
Proof. intros ?[[]][[]][[]]. simpl in *. by repeat f_equiv. Qed.


Definition reify_app_cont : ((laterO X * (laterO (X -n> X))) * state * (laterO X -n> laterO X)) →
option (laterO X * state) :=
λ '((e, k'), σ, k),
Some (((laterO_ap k' : laterO X -n> laterO X) e : laterO X), k::σ : state).
#[export] Instance reify_app_cont_ne :
NonExpansive (reify_app_cont :
prodO (prodO (prodO (laterO X) (laterO (X -n> X))) state)
(laterO X -n> laterO X) →
optionO (prodO (laterO X) (state))).
Proof.
intros ?[[[]]][[[]]]?. rewrite /reify_app_cont.
repeat f_equiv; apply H.
Qed.

End reifiers.

Canonical Structure reify_delim : sReifier CtxDep.
Proof.
simple refine {|
sReifier_ops := delimE;
sReifier_state := stateF
|}.
intros X HX op.
destruct op as [ | [ | [ | [| []]]]]; simpl.
- simple refine (OfeMor (reify_shift)).
- simple refine (OfeMor (reify_reset)).
- simple refine (OfeMor (reify_pop)).
- simple refine (OfeMor (reify_app_cont)).
Defined.

Section constructors.
Context {E : opsInterp} {A} `{!Cofe A}.
Context {subEff0 : subEff delimE E}.
Context {subOfe0 : SubOfe natO A}.
Context {subOfe1 : SubOfe unitO A}.
Notation IT := (IT E A).
Notation ITV := (ITV E A).

(** ** POP *)

Program Definition POP : IT -n> IT :=
λne e, Vis (E:=E) (subEff_opid op_pop)
(subEff_ins (F:=delimE) (op:=op_pop) (Next e))
(Empty_setO_rec _ ◎ (subEff_outs (F:=delimE) (op:=op_pop))^-1).
Solve All Obligations with solve_proper.

Notation 𝒫 := (get_val POP).

(** ** RESET *)

Program Definition RESET_ : (laterO IT -n> laterO IT) -n>
laterO IT -n>
IT :=
λne k e, Vis (E:=E) (subEff_opid op_reset)
(subEff_ins (F := delimE) (op := op_reset) (laterO_map 𝒫 e))
(k ◎ subEff_outs (F := delimE) (op := op_reset)^-1).
Solve Obligations with solve_proper.

Program Definition RESET : laterO IT -n> IT :=
RESET_ idfun.

(** ** SHIFT *)

Program Definition SHIFT_ : ((laterO IT -n> laterO IT) -n> laterO IT) -n>
(laterO IT -n> laterO IT) -n>
IT :=
λne f k, Vis (E:=E) (subEff_opid op_shift)
(subEff_ins (F:=delimE) (op:=op_shift) ((laterO_map $ 𝒫) ◎ f))
(k ◎ (subEff_outs (F:=delimE) (op:=op_shift))^-1).
Solve All Obligations with solve_proper.

Program Definition SHIFT : ((laterO IT -n> laterO IT) -n> laterO IT) -n> IT :=
λne f, SHIFT_ f (idfun).
Solve Obligations with solve_proper.

Lemma hom_SHIFT_ k e f `{!IT_hom f} :
f (SHIFT_ e k) ≡ SHIFT_ e (laterO_map (OfeMor f) ◎ k).
Proof.
unfold SHIFT_.
rewrite hom_vis/=.
f_equiv. by intro.
Qed.

(** ** APP_CONT *)

Program Definition APP_CONT_ : laterO IT -n> (laterO (IT -n> IT)) -n>
(laterO IT -n> laterO IT) -n>
IT :=
λne e k k', Vis (E := E) (subEff_opid op_app_cont)
(subEff_ins (F:=delimE) (op:=op_app_cont) (e, k))
(k' ◎ (subEff_outs (F:=delimE) (op:=op_app_cont))^-1).
Solve All Obligations with solve_proper.

Program Definition APP_CONT : laterO IT -n> (laterO (IT -n> IT)) -n>
IT :=
λne e k, APP_CONT_ e k idfun.
Solve All Obligations with solve_proper.

End constructors.

Notation 𝒫 := (get_val POP).

Section weakestpre.
Context {sz : nat}.
Variable (rs : gReifiers CtxDep sz).
Context {subR : subReifier reify_delim rs}.
Notation F := (gReifiers_ops rs).
Context {R} `{!Cofe R}.
Context `{!SubOfe natO R}.
Context `{!SubOfe unitO R}.
Notation IT := (IT F R).
Notation ITV := (ITV F R).
Notation state := (stateF ♯ IT).
Context `{!invGS Σ, !stateG rs R Σ}.
Notation iProp := (iProp Σ).

(** * The symbolic execution rules *)

(** ** SHIFT *)

Lemma wp_shift (σ : state) (f : (laterO IT -n> laterO IT) -n> laterO IT)
(k : IT -n> IT) β {Hk : IT_hom k} Φ s :
laterO_map 𝒫 (f (laterO_map k)) ≡ Next β →
has_substate σ -∗
▷ (£ 1 -∗ has_substate σ -∗ WP@{rs} β @ s {{ Φ }}) -∗
WP@{rs} (k (SHIFT f)) @ s {{ Φ }}.
Proof.
iIntros (Hp) "Hs Ha".
unfold SHIFT. simpl.
rewrite hom_vis.
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ (laterO_map 𝒫 $ f (laterO_map k)) with "Hs").
{
simpl. do 2 f_equiv; last done. do 2 f_equiv.
rewrite ccompose_id_l. intro. simpl. by rewrite ofe_iso_21.
}
{ exact Hp. }
iModIntro.
iApply "Ha".
Qed.

Lemma wp_reset (σ : state) (e : IT) (k : IT -n> IT) {Hk : IT_hom k}
Φ s :
has_substate σ -∗
▷ (£ 1 -∗ has_substate ((laterO_map k) :: σ) -∗
WP@{rs} 𝒫 e @ s {{ Φ }}) -∗
WP@{rs} k $ (RESET (Next e)) @ s {{ Φ }}.
Proof.
iIntros "Hs Ha".
unfold RESET. simpl. rewrite hom_vis.
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ (Next $ 𝒫 e) with "Hs").
- simpl. repeat f_equiv. rewrite ccompose_id_l.
trans ((laterO_map k) :: σ); last reflexivity.
f_equiv. intro. simpl. by rewrite ofe_iso_21.
- reflexivity.
- iApply "Ha".
Qed.

Lemma wp_pop_end (v : IT)
{HV : AsVal v}
Φ s :
has_substate [] -∗
▷ (£ 1 -∗ has_substate [] -∗ WP@{rs} v @ s {{ Φ }}) -∗
WP@{rs} 𝒫 v @ s {{ Φ }}.
Proof.
iIntros "Hs Ha".
rewrite get_val_ITV. simpl.
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ ((Next v)) with "Hs").
- simpl. reflexivity.
- reflexivity.
- done.
Qed.

Lemma wp_pop_cons (σ : state) (v : IT) (k : IT -n> IT)
{HV : AsVal v}
Φ s :
has_substate ((laterO_map k) :: σ) -∗
▷ (£ 1 -∗ has_substate σ -∗ WP@{rs} k $ v @ s {{ Φ }}) -∗
WP@{rs} 𝒫 v @ s {{ Φ }}.
Proof.
iIntros "Hs Ha".
rewrite get_val_ITV. simpl.
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ ((laterO_map k (Next v))) with "Hs").
- simpl. reflexivity.
- reflexivity.
- done.
Qed.

Lemma wp_app_cont (σ : state) (e : laterO IT) (k' : laterO (IT -n> IT))
(k : IT -n> IT) β {Hk : IT_hom k}
Φ s :
laterO_ap k' e ≡ Next β →
has_substate σ -∗
▷ (£ 1 -∗ has_substate ((laterO_map k) :: σ) -∗
WP@{rs} β @ s {{ Φ }}) -∗
WP@{rs} k (APP_CONT e k') @ s {{ Φ }}.
Proof.
iIntros (Hb) "Hs Ha".
unfold APP_CONT. simpl. rewrite hom_vis.
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ (Next β) with "Hs").
- cbn-[laterO_ap]. rewrite Hb. do 2 f_equiv.
trans (laterO_map k :: σ); last reflexivity.
rewrite ccompose_id_l. f_equiv. intro. simpl. by rewrite ofe_iso_21.
- reflexivity.
- iApply "Ha".
Qed.

End weakestpre.
2 changes: 1 addition & 1 deletion theories/effects/io_tape.v
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
(** I/O on a tape effect *)
(** * I/O on a tape effect *)
From gitrees Require Import prelude gitree.

Record state := State {
Expand Down
Loading

0 comments on commit 421eb90

Please sign in to comment.