-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from logsem/delim_staging
Delimited continuations
- Loading branch information
Showing
14 changed files
with
3,050 additions
and
861 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
(** * Representation of delimited continuations *) | ||
From gitrees Require Import prelude gitree. | ||
From iris.algebra Require Import list. | ||
|
||
(** * State, corresponding to a meta-continuation *) | ||
Definition stateF : oFunctor := (listOF (▶ ∙ -n> ▶ ∙))%OF. | ||
|
||
#[local] Instance state_inhabited : Inhabited (stateF ♯ unitO). | ||
Proof. apply _. Qed. | ||
|
||
#[local] Instance state_cofe X `{!Cofe X} : Cofe (stateF ♯ X). | ||
Proof. apply _. Qed. | ||
|
||
(* We store a list of meta continuations in the state. *) | ||
|
||
(** * Signatures *) | ||
|
||
(** Bind the innermost continuation *) | ||
Program Definition shiftE : opInterp := | ||
{| | ||
Ins := ((▶ ∙ -n> ▶ ∙) -n> ▶ ∙); | ||
Outs := (▶ ∙); | ||
|}. | ||
|
||
(** Delimit the continuation *) | ||
Program Definition resetE : opInterp := | ||
{| | ||
Ins := (▶ ∙); | ||
Outs := (▶ ∙); | ||
|}. | ||
|
||
(** Explicitly pop a continuation from the meta-continuation and jump | ||
to it *) | ||
Program Definition popE : opInterp := | ||
{| | ||
Ins := (▶ ∙); | ||
Outs := Empty_setO; | ||
|}. | ||
|
||
(** Applies continuation, pushes outer context in meta *) | ||
Program Definition appContE : opInterp := | ||
{| | ||
Ins := (▶ ∙ * (▶ (∙ -n> ∙))); | ||
Outs := ▶ ∙; | ||
|} . | ||
|
||
Definition delimE := @[shiftE; resetE; popE;appContE]. | ||
|
||
Notation op_shift := (inl ()). | ||
Notation op_reset := (inr (inl ())). | ||
Notation op_pop := (inr (inr (inl ()))). | ||
Notation op_app_cont := (inr (inr (inr (inl ())))). | ||
|
||
Section reifiers. | ||
Context {X} `{!Cofe X}. | ||
Notation state := (stateF ♯ X). | ||
|
||
Definition reify_shift : ((laterO X -n> laterO X) -n> laterO X) * | ||
state * (laterO X -n> laterO X) → | ||
option (laterO X * state) := | ||
λ '(f, σ, k), Some ((f k): laterO X, σ : state). | ||
#[export] Instance reify_shift_ne : | ||
NonExpansive (reify_shift : | ||
prodO (prodO ((laterO X -n> laterO X) -n> laterO X) state) | ||
(laterO X -n> laterO X) → | ||
optionO (prodO (laterO X) state)). | ||
Proof. intros ?[[]][[]][[]]. simpl in *. repeat f_equiv; auto. Qed. | ||
|
||
Definition reify_reset : (laterO X) * state * (laterO X -n> laterO X) → | ||
option (laterO X * state) := | ||
λ '(e, σ, k), Some (e, (k :: σ)). | ||
#[export] Instance reify_reset_ne : | ||
NonExpansive (reify_reset : | ||
prodO (prodO (laterO X) state) (laterO X -n> laterO X) → | ||
optionO (prodO (laterO X) state)). | ||
Proof. intros ?[[]][[]][[]]. simpl in *. by repeat f_equiv. Qed. | ||
|
||
|
||
Definition reify_pop : (laterO X) * state * (Empty_setO -n> laterO X) → | ||
option (laterO X * state) := | ||
λ '(e, σ, _), | ||
match σ with | ||
| [] => Some (e, σ) | ||
| k' :: σ' => Some (k' e, σ') | ||
end. | ||
#[export] Instance reify_pop_ne : | ||
NonExpansive (reify_pop : | ||
prodO (prodO (laterO X) state) (Empty_setO -n> laterO X) → | ||
optionO (prodO (laterO X) state)). | ||
Proof. intros ?[[]][[]][[]]. simpl in *. by repeat f_equiv. Qed. | ||
|
||
|
||
Definition reify_app_cont : ((laterO X * (laterO (X -n> X))) * state * (laterO X -n> laterO X)) → | ||
option (laterO X * state) := | ||
λ '((e, k'), σ, k), | ||
Some (((laterO_ap k' : laterO X -n> laterO X) e : laterO X), k::σ : state). | ||
#[export] Instance reify_app_cont_ne : | ||
NonExpansive (reify_app_cont : | ||
prodO (prodO (prodO (laterO X) (laterO (X -n> X))) state) | ||
(laterO X -n> laterO X) → | ||
optionO (prodO (laterO X) (state))). | ||
Proof. | ||
intros ?[[[]]][[[]]]?. rewrite /reify_app_cont. | ||
repeat f_equiv; apply H. | ||
Qed. | ||
|
||
End reifiers. | ||
|
||
Canonical Structure reify_delim : sReifier CtxDep. | ||
Proof. | ||
simple refine {| | ||
sReifier_ops := delimE; | ||
sReifier_state := stateF | ||
|}. | ||
intros X HX op. | ||
destruct op as [ | [ | [ | [| []]]]]; simpl. | ||
- simple refine (OfeMor (reify_shift)). | ||
- simple refine (OfeMor (reify_reset)). | ||
- simple refine (OfeMor (reify_pop)). | ||
- simple refine (OfeMor (reify_app_cont)). | ||
Defined. | ||
|
||
Section constructors. | ||
Context {E : opsInterp} {A} `{!Cofe A}. | ||
Context {subEff0 : subEff delimE E}. | ||
Context {subOfe0 : SubOfe natO A}. | ||
Context {subOfe1 : SubOfe unitO A}. | ||
Notation IT := (IT E A). | ||
Notation ITV := (ITV E A). | ||
|
||
(** ** POP *) | ||
|
||
Program Definition POP : IT -n> IT := | ||
λne e, Vis (E:=E) (subEff_opid op_pop) | ||
(subEff_ins (F:=delimE) (op:=op_pop) (Next e)) | ||
(Empty_setO_rec _ ◎ (subEff_outs (F:=delimE) (op:=op_pop))^-1). | ||
Solve All Obligations with solve_proper. | ||
|
||
Notation 𝒫 := (get_val POP). | ||
|
||
(** ** RESET *) | ||
|
||
Program Definition RESET_ : (laterO IT -n> laterO IT) -n> | ||
laterO IT -n> | ||
IT := | ||
λne k e, Vis (E:=E) (subEff_opid op_reset) | ||
(subEff_ins (F := delimE) (op := op_reset) (laterO_map 𝒫 e)) | ||
(k ◎ subEff_outs (F := delimE) (op := op_reset)^-1). | ||
Solve Obligations with solve_proper. | ||
|
||
Program Definition RESET : laterO IT -n> IT := | ||
RESET_ idfun. | ||
|
||
(** ** SHIFT *) | ||
|
||
Program Definition SHIFT_ : ((laterO IT -n> laterO IT) -n> laterO IT) -n> | ||
(laterO IT -n> laterO IT) -n> | ||
IT := | ||
λne f k, Vis (E:=E) (subEff_opid op_shift) | ||
(subEff_ins (F:=delimE) (op:=op_shift) ((laterO_map $ 𝒫) ◎ f)) | ||
(k ◎ (subEff_outs (F:=delimE) (op:=op_shift))^-1). | ||
Solve All Obligations with solve_proper. | ||
|
||
Program Definition SHIFT : ((laterO IT -n> laterO IT) -n> laterO IT) -n> IT := | ||
λne f, SHIFT_ f (idfun). | ||
Solve Obligations with solve_proper. | ||
|
||
Lemma hom_SHIFT_ k e f `{!IT_hom f} : | ||
f (SHIFT_ e k) ≡ SHIFT_ e (laterO_map (OfeMor f) ◎ k). | ||
Proof. | ||
unfold SHIFT_. | ||
rewrite hom_vis/=. | ||
f_equiv. by intro. | ||
Qed. | ||
|
||
(** ** APP_CONT *) | ||
|
||
Program Definition APP_CONT_ : laterO IT -n> (laterO (IT -n> IT)) -n> | ||
(laterO IT -n> laterO IT) -n> | ||
IT := | ||
λne e k k', Vis (E := E) (subEff_opid op_app_cont) | ||
(subEff_ins (F:=delimE) (op:=op_app_cont) (e, k)) | ||
(k' ◎ (subEff_outs (F:=delimE) (op:=op_app_cont))^-1). | ||
Solve All Obligations with solve_proper. | ||
|
||
Program Definition APP_CONT : laterO IT -n> (laterO (IT -n> IT)) -n> | ||
IT := | ||
λne e k, APP_CONT_ e k idfun. | ||
Solve All Obligations with solve_proper. | ||
|
||
End constructors. | ||
|
||
Notation 𝒫 := (get_val POP). | ||
|
||
Section weakestpre. | ||
Context {sz : nat}. | ||
Variable (rs : gReifiers CtxDep sz). | ||
Context {subR : subReifier reify_delim rs}. | ||
Notation F := (gReifiers_ops rs). | ||
Context {R} `{!Cofe R}. | ||
Context `{!SubOfe natO R}. | ||
Context `{!SubOfe unitO R}. | ||
Notation IT := (IT F R). | ||
Notation ITV := (ITV F R). | ||
Notation state := (stateF ♯ IT). | ||
Context `{!invGS Σ, !stateG rs R Σ}. | ||
Notation iProp := (iProp Σ). | ||
|
||
(** * The symbolic execution rules *) | ||
|
||
(** ** SHIFT *) | ||
|
||
Lemma wp_shift (σ : state) (f : (laterO IT -n> laterO IT) -n> laterO IT) | ||
(k : IT -n> IT) β {Hk : IT_hom k} Φ s : | ||
laterO_map 𝒫 (f (laterO_map k)) ≡ Next β → | ||
has_substate σ -∗ | ||
▷ (£ 1 -∗ has_substate σ -∗ WP@{rs} β @ s {{ Φ }}) -∗ | ||
WP@{rs} (k (SHIFT f)) @ s {{ Φ }}. | ||
Proof. | ||
iIntros (Hp) "Hs Ha". | ||
unfold SHIFT. simpl. | ||
rewrite hom_vis. | ||
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ (laterO_map 𝒫 $ f (laterO_map k)) with "Hs"). | ||
{ | ||
simpl. do 2 f_equiv; last done. do 2 f_equiv. | ||
rewrite ccompose_id_l. intro. simpl. by rewrite ofe_iso_21. | ||
} | ||
{ exact Hp. } | ||
iModIntro. | ||
iApply "Ha". | ||
Qed. | ||
|
||
Lemma wp_reset (σ : state) (e : IT) (k : IT -n> IT) {Hk : IT_hom k} | ||
Φ s : | ||
has_substate σ -∗ | ||
▷ (£ 1 -∗ has_substate ((laterO_map k) :: σ) -∗ | ||
WP@{rs} 𝒫 e @ s {{ Φ }}) -∗ | ||
WP@{rs} k $ (RESET (Next e)) @ s {{ Φ }}. | ||
Proof. | ||
iIntros "Hs Ha". | ||
unfold RESET. simpl. rewrite hom_vis. | ||
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ (Next $ 𝒫 e) with "Hs"). | ||
- simpl. repeat f_equiv. rewrite ccompose_id_l. | ||
trans ((laterO_map k) :: σ); last reflexivity. | ||
f_equiv. intro. simpl. by rewrite ofe_iso_21. | ||
- reflexivity. | ||
- iApply "Ha". | ||
Qed. | ||
|
||
Lemma wp_pop_end (v : IT) | ||
{HV : AsVal v} | ||
Φ s : | ||
has_substate [] -∗ | ||
▷ (£ 1 -∗ has_substate [] -∗ WP@{rs} v @ s {{ Φ }}) -∗ | ||
WP@{rs} 𝒫 v @ s {{ Φ }}. | ||
Proof. | ||
iIntros "Hs Ha". | ||
rewrite get_val_ITV. simpl. | ||
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ ((Next v)) with "Hs"). | ||
- simpl. reflexivity. | ||
- reflexivity. | ||
- done. | ||
Qed. | ||
|
||
Lemma wp_pop_cons (σ : state) (v : IT) (k : IT -n> IT) | ||
{HV : AsVal v} | ||
Φ s : | ||
has_substate ((laterO_map k) :: σ) -∗ | ||
▷ (£ 1 -∗ has_substate σ -∗ WP@{rs} k $ v @ s {{ Φ }}) -∗ | ||
WP@{rs} 𝒫 v @ s {{ Φ }}. | ||
Proof. | ||
iIntros "Hs Ha". | ||
rewrite get_val_ITV. simpl. | ||
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ ((laterO_map k (Next v))) with "Hs"). | ||
- simpl. reflexivity. | ||
- reflexivity. | ||
- done. | ||
Qed. | ||
|
||
Lemma wp_app_cont (σ : state) (e : laterO IT) (k' : laterO (IT -n> IT)) | ||
(k : IT -n> IT) β {Hk : IT_hom k} | ||
Φ s : | ||
laterO_ap k' e ≡ Next β → | ||
has_substate σ -∗ | ||
▷ (£ 1 -∗ has_substate ((laterO_map k) :: σ) -∗ | ||
WP@{rs} β @ s {{ Φ }}) -∗ | ||
WP@{rs} k (APP_CONT e k') @ s {{ Φ }}. | ||
Proof. | ||
iIntros (Hb) "Hs Ha". | ||
unfold APP_CONT. simpl. rewrite hom_vis. | ||
iApply (wp_subreify_ctx_dep _ _ _ _ _ _ _ (Next β) with "Hs"). | ||
- cbn-[laterO_ap]. rewrite Hb. do 2 f_equiv. | ||
trans (laterO_map k :: σ); last reflexivity. | ||
rewrite ccompose_id_l. f_equiv. intro. simpl. by rewrite ofe_iso_21. | ||
- reflexivity. | ||
- iApply "Ha". | ||
Qed. | ||
|
||
End weakestpre. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.