Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding rerank as a retriever #331

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions libs/aws/langchain_aws/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
InMemorySemanticCache,
InMemoryVectorStore,
)
from langchain_aws.rerank.rerank import BedrockRerank

__all__ = [
"BedrockEmbeddings",
Expand All @@ -29,4 +30,5 @@
"NeptuneGraph",
"InMemoryVectorStore",
"InMemorySemanticCache",
"BedrockRerank"
]
Empty file.
126 changes: 126 additions & 0 deletions libs/aws/langchain_aws/rerank/rerank.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
import json
from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union

import boto3
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.utils import from_env
from pydantic import ConfigDict, Field, model_validator
from typing_extensions import Self


class BedrockRerank(BaseDocumentCompressor):
"""Document compressor that uses AWS Bedrock Rerank API."""

client: Any = None
"""Bedrock client to use for compressing documents."""
top_n: Optional[int] = 3
"""Number of documents to return."""
model: Optional[str] = "amazon.rerank-v1:0"
"""Model to use for reranking. Default is amazon.rerank-v1:0."""
aws_region: str = Field(
default_factory=from_env("AWS_DEFAULT_REGION", default="us-west-2")
)
"""AWS region to initialize the Bedrock client."""
aws_profile: Optional[str] = Field(
default_factory=from_env("AWS_PROFILE", default=None)
)
"""AWS profile for authentication, optional."""

model_config = ConfigDict(
extra="forbid",
arbitrary_types_allowed=True,
)

@model_validator(mode="after")
def initialize_client(self) -> Self:
"""Initialize the AWS Bedrock client."""
if not self.client:
session = (
boto3.Session(profile_name=self.aws_profile)
if self.aws_profile
else boto3.Session()
)
self.client = session.client("bedrock-runtime", region_name=self.aws_region)
return self

def rerank(
self,
documents: Sequence[Union[str, Document, dict]],
query: str,
*,
top_n: Optional[int] = None,
model: Optional[str] = None,
) -> List[Dict[str, Any]]:
"""Returns an ordered list of documents based on their relevance to the query.

Args:
query: The query to use for reranking.
documents: A sequence of documents to rerank.
top_n: The number of top-ranked results to return. Defaults to self.top_n.
model: The model to use for reranking. Defaults to self.model.

Returns:
List[Dict[str, Any]]: A list of ranked documents with relevance scores.
"""
if len(documents) == 0:
return []

# Serialize documents for the Bedrock API
serialized_documents = [
json.dumps(doc)
if isinstance(doc, dict)
else doc.page_content
if isinstance(doc, Document)
else doc
for doc in documents
]

body = json.dumps(
{
"query": query,
"documents": serialized_documents,
"top_n": top_n or self.top_n,
}
)

response = self.client.invoke_model(
modelId=model or self.model,
accept="application/json",
contentType="application/json",
body=body,
)

response_body = json.loads(response.get("body").read())
results = [
{"index": result["index"], "relevance_score": result["relevance_score"]}
for result in response_body["results"]
]

return results

def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""
Compress documents using Bedrock's rerank API.

Args:
documents: A sequence of documents to compress.
query: The query to use for compressing the documents.
callbacks: Callbacks to run during the compression process.

Returns:
A sequence of compressed documents.
"""
compressed = []
for res in self.rerank(documents, query):
doc = documents[res["index"]]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
doc_copy.metadata["relevance_score"] = res["relevance_score"]
compressed.append(doc_copy)
return compressed
Empty file.
75 changes: 75 additions & 0 deletions libs/aws/tests/unit_tests/rerank/test_rerank.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
import json
from unittest.mock import MagicMock

import pytest
from langchain_core.documents import Document

from langchain_aws import BedrockRerank


# Mock setup
@pytest.fixture
def mock_bedrock_client():
mock_client = MagicMock()
mock_client.invoke_model.return_value = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps(
{
"results": [
{"index": 0, "relevance_score": 0.95},
{"index": 1, "relevance_score": 0.90},
]
}
)
)
)
}
return mock_client


@pytest.fixture
def bedrock_rerank(mock_bedrock_client):
return BedrockRerank(client=mock_bedrock_client)


# Test initialize_client
def test_initialize_client_with_profile():
bedrock_rerank = BedrockRerank(aws_profile="default")
bedrock_rerank.initialize_client()
assert bedrock_rerank.client is not None


def test_initialize_client_without_profile():
bedrock_rerank = BedrockRerank()
bedrock_rerank.initialize_client()
assert bedrock_rerank.client is not None


# Test rerank method
def test_rerank_success(bedrock_rerank):
documents = ["doc1", "doc2", "doc3"]
query = "Test query"
results = bedrock_rerank.rerank(documents, query)
assert len(results) == 2
assert results[0]["index"] == 0
assert results[0]["relevance_score"] == 0.95


def test_rerank_empty_documents(bedrock_rerank):
results = bedrock_rerank.rerank([], "query")
assert results == []


# Test compress_documents method
def test_compress_documents(bedrock_rerank):
documents = [
Document(page_content="doc1"),
Document(page_content="doc2"),
Document(page_content="doc3"),
]
query = "Test query"
compressed = bedrock_rerank.compress_documents(documents, query)
assert len(compressed) == 2
assert compressed[0].metadata["relevance_score"] == 0.95
assert compressed[1].metadata["relevance_score"] == 0.90