https://ntu-course-chatbot.ml/
Create a Python3 virtualenv
and run sh install.sh
.
We used theano
backend, which can be set in ~/.keras/keras.json
.
After install, you may access
python3 manage.py runserver
- Interactive demo site
- Rule-based: http://localhost:8000
- RL: http://localhost:8000/rl
- Django admin http://localhost:8000/admin
- Interactive demo site
python3 manage.py shell
- Making queries in Django interactive shell
python3 generate_template.py
Generated files will be put in request_template
folder.
request_template
├── [ 90775360] classroom.txt
├── [ 65659689] instructor.txt
├── [ 87333770] schedule.txt
└── [ 79905920] title.txt
~1M sentences for each goal.
-
Course (raw_type: html-format)
Semester Serial_no Designated_for Curriculum_no Class_no Title Credits Curriculum_identity_no Full_half_yr Required_elective Instructor Instructor_url Sel_method Schedule_str Classroom Classroom_url Capacity Course_limits Remarks Syllabus_url Description Goal Requirements Office_hours Textbooks Grading Progress Course_url 104-1 73565 網媒所 CSIE5430 機器學習 4 922 U4240 半年 選修 林軒田 http://nol2.aca.ntu.edu.tw/nol/coursesearch/teacher.php?op=s2&td=902083 2 一3,4三3,4 資103 http://map.ntu.edu.tw/ntu.html?layer=&uid=AT3001 176 限學士班三年級以上,本校修課人數上限:176人 初選不開放。本課程將配合開設大型線上開放式課程。 http://nol2.aca.ntu.edu.tw/nol/coursesearch/print_table.php?course_id=922 U4240&class=&dpt_code=9440&ser_no=73565&semester=104-1&lang=CH -
Review (raw_type: html-format)
Title Loading Sweetness Stars Content Sentiment Probability [評價] 105-1 臺灣史一 李文良 0 0 0 (是/否/其他條件):是 哪一學年度修課: 105-1 ψ 授課教師 (若為多人合授請寫開課教師,以方便收錄) 李文良 λ 開課系所與授課對象 (是否為必修或通識課 / 內容是否與某些背景相關) 歷史系大一必修 δ 課程大概內容 明末/大航海時代~開港前台灣史 Ω 私心推薦指數(以五分計) ★★★★★ 滿天星 η 上課用書(影印講義或是指定教科書) 自編講義,可於ceiba取得 μ 上課方式(投影片、團體討論、老師教學風格) 口述+一點點版書,不過老師聲音頗輕柔,太累的話就QQ惹 σ 評分方式(給分甜嗎?是紮實分?) 好像頗甜,每個星期都有指定閱讀,紮實與否純看用功程度XD ρ 考題型式、作業方式 三篇讀書心得,期末考申論題+名詞解釋 ω 其它(是否注重出席率?如果為外系選修,需先有什麼基礎較好嗎?老師個性? 加簽習慣?嚴禁遲到等…) 全簽,助教課要到,正課好像是隨老師心情點名 Ψ 總結 如果每個星期讀書的話其實會覺得正課有點無聊,然後期末考都好簡單這樣XD 不過依照討論課的情況,真的每星期讀的人好像不多 然後討論課刷存在感好像++++++很多分~ 讀書心得給分頗甜 我大概16個星期(18扣期中期末)認真讀了13個星期吧(圖書館大好OwO) 最後A+ 有讀書的話期末考唯一的困擾就是手痠 -- Positive 0.6
-
Bordes, Antoine, and Jason Weston. "Learning end-to-end goal-oriented dialog." Proceedings of The 5th International Conference on Learning Representations. 2017. (last updated: 2017/4/17)
-
Serban, Iulian Vlad, et al. "Generative Deep Neural Networks for Dialogue: A Short Review." arXiv preprint arXiv:1611.06216 (2016). (last updated: 2017/4/17)
-
Shah, Pararth, Dilek Hakkani-Tür, and Larry Heck. "Interactive reinforcement learning for task-oriented dialogue management." NIPS 2016 Deep Learning for Action and Interaction Workshop. 2016. (last updated: 2017/4/17)
-
Li, Xiujun, et al. "A User Simulator for Task-Completion Dialogues." arXiv preprint arXiv:1612.05688 (2016).
(github-repo here) (last updated: 2017/4/23) -
Li, Xuijun, et al. "End-to-end task-completion neural dialogue systems." arXiv preprint arXiv:1703.01008 (2017).
(github-repo here) (last updated: 2017/4/23) -
Yun-Nung Chen, et al. "End-to-End Memory Networks with Knowledge Carryover for Multi-Turn Spoken Language Understanding (last updated: 2017/5/6)