Skip to content
forked from argallmr/pymms

Python library for analyzing data from NASA's Magnetospheric Multiscale (MMS) mission.

License

Notifications You must be signed in to change notification settings

krmhanieh/pymms

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

PyMMS

Installation

For development purposes, install the package using

$ python3 setup.py develop --user

This installation will reflect any changes made in the pymms development directory without the need to reinstall the package every single time.

Scripts

gls

The pymms.gls package includes two user-runnable console commands: gls-mp and gls-mp-data. Calling gls-mp runs the mp-dl-unh model to generate predicted SITL selections over a date range.

$ gls-mp -h
usage: gls-mp [-h] [-g] [-t] [-c C] [-temp] start end sc

positional arguments:
  start            Start date of data interval, formatted as either '%Y-%m-%d'
                   or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted
                   as an orbit number.
  end              Start date of data interval, formatted as either '%Y-%m-%d'
                   or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted
                   as an orbit number.
  sc               Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')

optional arguments:
  -h, --help       show this help message and exit
  -g, -gpu         Enables use of GPU-accelerated model for faster
                   predictions. Requires CUDA installed.
  -t, -test        Runs a test routine on the model.
  -c C, -chunks C  Break up the processing of the date interval in C chunks.
  -temp            If running the job in chunks, deletes the contents of the
                   MMS root data folder after each chunk.

Calling gls-mp-data generates a CSV file containing data formatted and preprocessed for gls-mp. This can be used when training your own version of mp-dl-unh.

$ gls-mp-data -h
usage: gls-mp-data [-h] [-is] [-ip] [-v] sc level start end output

positional arguments:
  sc                    Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')
  level                 Data quality level ('l1a', 'l1b', 'sitl', 'l2pre',
                        'l2', 'l3')
  start                 Start date of data interval, formatted as either
                        '%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an
                        integer, interpreted as an orbit number.
  end                   Start date of data interval, formatted as either
                        '%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an
                        integer, interpreted as an orbit number.
  output                Path the output CSV file, including the CSV file's
                        name.

optional arguments:
  -h, --help            show this help message and exit
  -is, --include-selections
                        Includes SITL selections in the output data.
  -ip, --include-partials
                        Includes partial magnetopause crossings in SITL
                        selections.
  -v, --verbose         If true, prints out optional information about
                        downloaded variables.

If PyMMS is installed with the --user flag and PyMMS is used from a unix system, you must call:

$ export PATH=~/.local/bin$PATH
$ source ~/.bash_profile

before calling gls-mp or gls-mp-data.

Citation

If you make use of this software to analyze MMS use or data, please consider citing the software. Follow the Zenodo DOI at the top for a citation to the most recent release, or head to Zenodo to see the citations/DOIs of other releases.

About

Python library for analyzing data from NASA's Magnetospheric Multiscale (MMS) mission.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%