Skip to content

An optimized FastAPI server for OpenAI's Whisper whisper-large-v3-turbo model using MLX optimization

License

Notifications You must be signed in to change notification settings

kristofferv98/whisper_turboapi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WhisperTurboAPI

An optimized FastAPI server implementation of OpenAI's Whisper large-v3-turbo model using MLX optimization, designed for low-latency, asynchronous and synchronous audio transcription on macOS.

Features

  • 🎙️ Fast Audio Transcription: Leverage the turbocharged, MLX-optimized Whisper large-v3-turbo model for quick and accurate transcriptions.
  • 🌐 RESTful API Access: Easily integrate with any environment that supports HTTP requests.
  • Async/Sync Support: Seamlessly handle both asynchronous and synchronous transcription requests.
  • 🔄 Low Latency: Optimized for minimal delay by preloading models and efficient processing.
  • 🔧 High Throughput: Capable of handling multiple concurrent transcription requests.
  • 🚀 Easy Setup: Simple setup process.

System Requirements

  • Operating System: macOS with Apple Silicon (recommended for optimal performance due to MLX optimizations)
  • Python Version: 3.12.3 (required for MLX optimization)
  • Python Version Manager: pyenv (recommended but optional)

Installation

1. Clone the Repository

git clone https://github.com/kristofferv98/whisper_turboapi.git
cd whisper_turboapi

2. Run the Setup Script

The setup.sh script will handle the environment setup, including checking for the required Python version, creating a virtual environment, installing dependencies, and verifying the installation.

./setup.sh

Optional Flags:

  • -y or --yes: Run in headless mode (assume 'yes' to all prompts)
  • -p or --python-version: Specify the required Python version (default: 3.12.3)
  • -f or --force: Force actions like recreating the virtual environment
  • -h or --help: Display help message

Example:

./setup.sh -y

This will run the setup in headless mode, assuming 'yes' to all prompts.

3. Start the Server

After the setup completes, you can start the server using:

./start_server.sh

The server supports several command-line options:

./start_server.sh --host=0.0.0.0  # Custom host (default: 0.0.0.0)
./start_server.sh --port=8080     # Custom port (default: 8000)
./start_server.sh --help          # Show help message

You can combine options:

./start_server.sh --host=127.0.0.1 --port=8080

The server will automatically:

  • Activate the virtual environment if not already active
  • Verify all required packages are installed
  • Start the FastAPI server with the specified host and port

Note: The start_server.sh script ensures that the virtual environment is activated and that all required packages are installed before starting the server.

Usage Examples

Simple Python Client

Here’s a basic synchronous client example using requests.

import requests
import os

def transcribe_audio(file_path, quick=True, any_lang=True, server_url="http://localhost:8000"):
    """
    Simplified function to transcribe an audio file using the WhisperTurboAPI server.

    Args:
        file_path (str): Path to the audio file.
        quick (bool, optional): Whether to use quick mode. Default is True.
        any_lang (bool, optional): Whether to allow any language detection. Default is True.
        server_url (str, optional): URL of the transcription server.

    Returns:
        str: The transcribed text.
    """
    if not os.path.exists(file_path):
        raise FileNotFoundError(f"Audio file not found: {file_path}")
        
    if not file_path.lower().endswith(('.wav', '.mp3', '.m4a', '.flac')):
        raise ValueError("Unsupported audio format. Use WAV, MP3, M4A, or FLAC")
        
    with open(file_path, 'rb') as f:
        files = {'file': (os.path.basename(file_path), f, 'audio/wav')}
        params = {
            'quick': str(quick).lower(),
            'any_lang': str(any_lang).lower()
        }
        response = requests.post(f"{server_url}/transcribe", files=files, params=params)
    if response.status_code == 200:
        return response.json()['text']
    else:
        raise Exception(f"Request failed: {response.status_code}, {response.text}")

# Example usage
if __name__ == "__main__":
    # Replace 'path/to/audio.wav' with the path to your audio file
    audio_file = 'path/to/audio.wav'
    try:
        transcription = transcribe_audio(audio_file, quick=True, any_lang=False)
        print("Transcription:")
        print(transcription)
    except Exception as e:
        print(f"An error occurred: {e}")

Asynchronous Client

An asynchronous client example using aiohttp.

import aiohttp
import asyncio
import os

async def transcribe_async(file_path, quick=True, any_lang=True, server_url="http://localhost:8000"):
    """
    Asynchronous function to transcribe an audio file using the WhisperTurboAPI server.

    Args:
        file_path (str): Path to the audio file.
        quick (bool, optional): Whether to use quick mode. Default is True.
        any_lang (bool, optional): Whether to allow any language detection. Default is True.
        server_url (str, optional): URL of the transcription server.

    Returns:
        str: The transcribed text.
    """
    if not os.path.exists(file_path):
        raise FileNotFoundError(f"Audio file not found: {file_path}")

    if not file_path.lower().endswith(('.wav', '.mp3', '.m4a', '.flac')):
        raise ValueError("Unsupported audio format. Use WAV, MP3, M4A, or FLAC")

    async with aiohttp.ClientSession() as session:
        with open(file_path, 'rb') as f:
            data = aiohttp.FormData()
            data.add_field('file', f, filename=os.path.basename(file_path))
            params = {
                'quick': str(quick).lower(),
                'any_lang': str(any_lang).lower()
            }

            async with session.post(f"{server_url}/transcribe", data=data, params=params) as response:
                if response.status == 200:
                    result = await response.json()
                    return result['text']
                else:
                    error_detail = await response.text()
                    raise Exception(f"Error: {response.status} - {error_detail}")

# Example usage
if __name__ == "__main__":
    async def main():
        audio_file = 'path/to/audio.wav'
        try:
            transcription = await transcribe_async(audio_file, quick=False, any_lang=True)
            print("Transcription:")
            print(transcription)
        except Exception as e:
            print(f"An error occurred: {e}")

    asyncio.run(main())

CURL

You can use curl to test the API. Here's a working example:

curl -X POST \
  -H "Content-Type: multipart/form-data" \
  -F "file=@path/to/your/audio.wav" \
  http://localhost:8000/transcribe

For example with a sample audio file:

curl -X POST \
  -H "Content-Type: multipart/form-data" \
  -F "file=@sample_audio.wav" \
  http://localhost:8000/transcribe

The response will be JSON formatted:

{
    "text": "Transcribed text here...",
    "elapsed_time": 1.44,
    "quick_mode": true,
    "any_lang": true
}

API Reference

POST /transcribe

Transcribe an audio file.

Headers:

  • Content-Type: multipart/form-data (required)

Parameters:

  • file (form data, required): Audio file (WAV, MP3, M4A, FLAC)

Example Request:

curl -X POST \
  -H "Content-Type: multipart/form-data" \
  -F "[email protected]" \
  http://localhost:8000/transcribe

Response:

{
    "text": "The transcribed text will appear here...",
    "elapsed_time": 1.44,
    "quick_mode": true,
    "any_lang": true
}

Status Codes:

  • 200 OK: Successful transcription
  • 400 Bad Request: Invalid file format or missing file
  • 500 Internal Server Error: Server processing error

GET /health

Check server status.

Response:

{
    "status": "healthy",
    "version": "1.0.0"
}

Demo:

For testing, example clients are provided in:

  • examples/demo.py: Demonstrates both synchronous and asynchronous client
  • examples/simple_demo.py: Basic synchronous client

License

MIT License

Acknowledgements

Based on whisper-turbo-mlx by JosefAlbers, which provides a fast and lightweight implementation of the Whisper model using MLX.