Leva is a Ruby on Rails framework for evaluating Language Models (LLMs) using ActiveRecord datasets on production models. It provides a flexible structure for creating experiments, managing datasets, and implementing various evaluation logic on production data with security in mind.
Add this line to your application's Gemfile:
gem 'leva'
And then execute:
bundle install
Add the migrations to your database:
rails leva:install:migrations
rails db:migrate
First, create a dataset and add any ActiveRecord records you want to evaluate against. To make your models compatible with Leva, include the Leva::Recordable
concern in your model:
class TextContent < ApplicationRecord
include Leva::Recordable
# @return [String] The ground truth label for the record
def ground_truth
expected_label
end
# @return [Hash] A hash of attributes to be displayed in the dataset records index
def index_attributes
{
text: text,
expected_label: expected_label,
created_at: created_at.strftime('%Y-%m-%d %H:%M:%S')
}
end
# @return [Hash] A hash of attributes to be displayed in the dataset record show view
def show_attributes
{
text: text,
expected_label: expected_label,
created_at: created_at.strftime('%Y-%m-%d %H:%M:%S')
}
end
# @return [Hash] A hash of attributes to be displayed in the dataset record show view
def to_llm_context
{
text: text,
expected_label: expected_label,
created_at: created_at.strftime('%Y-%m-%d %H:%M:%S')
}
end
end
dataset = Leva::Dataset.create(name: "Sentiment Analysis Dataset") dataset.add_record TextContent.create(text: "I love this product!", expected_label: "Positive") dataset.add_record TextContent.create(text: "Terrible experience", expected_label: "Negative") dataset.add_record TextContent.create(text: "It's ok", expected_label: "Neutral")
### 2. Implementing Runs
Create a run class to handle the execution of your inference logic:
```bash
rails generate leva:runner sentiment
class SentimentRun < Leva::BaseRun
def execute(record)
# Your model execution logic here
# This could involve calling an API, running a local model, etc.
# Return the model's output
end
end
Create one or more eval classes to evaluate the model's output:
rails generate leva:eval sentiment_accuracy
class SentimentAccuracyEval < Leva::BaseEval
def evaluate(prediction, record)
score = prediction == record.expected_label ? 1.0 : 0.0
[score, record.expected_label]
end
end
class SentimentF1Eval < Leva::BaseEval
def evaluate(prediction, record)
# Calculate F1 score
# ...
[f1_score, record.f1_score]
end
end
You can run experiments with different runs and evals:
experiment = Leva::Experiment.create!(name: "Sentiment Analysis", dataset: dataset)
run = SentimentRun.new
evals = [SentimentAccuracyEval.new, SentimentF1Eval.new]
Leva.run_evaluation(experiment: experiment, run: run, evals: evals)
You can also use prompts with your runs:
prompt = Leva::Prompt.create!(
name: "Sentiment Analysis",
version: 1,
system_prompt: "You are an expert at analyzing text and returning the sentiment.",
user_prompt: "Please analyze the following text and return the sentiment as Positive, Negative, or Neutral.\n\n{{TEXT}}",
metadata: { model: "gpt-4", temperature: 0.5 }
)
experiment = Leva::Experiment.create!(
name: "Sentiment Analysis with LLM",
dataset: dataset,
prompt: prompt
)
run = SentimentRun.new
evals = [SentimentAccuracyEval.new, SentimentF1Eval.new]
Leva.run_evaluation(experiment: experiment, run: run, evals: evals)
After the experiments are complete, analyze the results:
experiment.evaluation_results.group_by(&:evaluator_class).each do |evaluator_class, results|
average_score = results.average(&:score)
puts "#{evaluator_class.capitalize} Average Score: #{average_score}"
end
Ensure you set up any required API keys or other configurations in your Rails credentials or environment variables.
Leva
: Handles the process of running experiments.Leva::BaseRun
: Base class for run implementations.Leva::BaseEval
: Base class for eval implementations.
Leva::Dataset
: Represents a collection of data to be evaluated.Leva::DatasetRecord
: Represents individual records within a dataset.Leva::Experiment
: Represents a single run of an evaluation on a dataset.Leva::RunnerResult
: Stores the results of each run execution.Leva::EvaluationResult
: Stores the results of each evaluation.Leva::Prompt
: Represents a prompt for an LLM.
Bug reports and pull requests are welcome on GitHub at https://github.com/kieranklaassen/leva.
The gem is available as open source under the terms of the MIT License.
- Parallelize evaluation