Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

k2SSL: A Faster and Better Framework for Self-Supervised Speech Representation Learning #1745

Draft
wants to merge 47 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
47 commits
Select commit Hold shift + click to select a range
8e296b7
add librilight ssl recipe
Aug 9, 2024
f26dd3b
support multinode multigpu
Aug 10, 2024
cce86a3
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Aug 14, 2024
8b1402a
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Aug 16, 2024
70a1713
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Aug 19, 2024
d025ce1
use lr hours in librilight ssl
Aug 19, 2024
d0a96a6
Update run_multi_node_multi_gpu.sh
yfyeung Aug 21, 2024
eca8afc
Update pretrain.py
yfyeung Aug 21, 2024
8fe6713
Update pretrain.py
yfyeung Aug 21, 2024
6dbcdba
Update pretrain.py
yfyeung Aug 22, 2024
f672df2
Update run_multi_node_multi_gpu.sh
yfyeung Aug 22, 2024
6357d42
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Aug 22, 2024
ad61d72
Update pretrain.py
yfyeung Aug 22, 2024
26b2a57
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Aug 28, 2024
ef5cf02
Update finetune_ctc.py
yfyeung Sep 2, 2024
13c6e81
Delete egs/librispeech/SSL/pretrain.sh
yfyeung Sep 5, 2024
673ca14
Delete egs/librilight/SSL/zipformer/finetune.py
yfyeung Sep 7, 2024
affc43b
Delete egs/librilight/SSL/zipformer/decode.py
yfyeung Sep 7, 2024
d4a5c40
Delete egs/librilight/SSL/zipformer/asr_datamodule.py
yfyeung Sep 7, 2024
2e52cbf
Update finetune_ctc.py
yfyeung Sep 7, 2024
2d3452f
Update finetune.py
yfyeung Sep 7, 2024
19cc5ba
Update finetune_ce.py
yfyeung Sep 7, 2024
f05b3b1
Update finetune.py
yfyeung Sep 7, 2024
450d05d
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Sep 7, 2024
b35924f
small fix
yfyeung Sep 7, 2024
8c257a3
fix isort
yfyeung Sep 8, 2024
6a30568
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Sep 8, 2024
25b6dd2
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Sep 24, 2024
e80b9dc
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Oct 21, 2024
c920735
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Oct 21, 2024
84f8adf
update prepare.sh
Oct 23, 2024
a6a8089
add sliding window
Oct 23, 2024
ce72b34
update
Oct 24, 2024
34957a6
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Oct 24, 2024
d4b6cb0
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Oct 28, 2024
1b89c6d
skipping batch counts hurts performance
Oct 29, 2024
277b261
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Oct 31, 2024
893fee4
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Nov 4, 2024
6cda098
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Nov 22, 2024
ebd31da
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Dec 14, 2024
01e2c2a
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Dec 22, 2024
e8fa10e
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Dec 31, 2024
c64a9ba
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Jan 1, 2025
ab44ac0
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Jan 6, 2025
dcc4730
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Jan 6, 2025
54d0a2b
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Jan 11, 2025
fcb4295
Merge branch 'k2-fsa:master' into dev/k2ssl
yfyeung Jan 18, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 88 additions & 0 deletions egs/librilight/SSL/local/analyze_codebook.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
from collections import Counter
from pathlib import Path

import torch
from lhotse import CutSet
from tqdm import tqdm

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def get_args():
parser = argparse.ArgumentParser()

parser.add_argument(
"--cuts-path",
type=str,
default="data/kmeans/librispeech_cuts_dev-clean.jsonl.gz",
)

parser.add_argument(
"--num-clusters",
type=int,
default=500,
)

return parser.parse_args()


def analyze_codebook(args):
cuts_path = Path(args.cuts_path)
assert cuts_path.is_file(), f"{cuts_path} does not exist"

logging.info(f"Loading {cuts_path}")
cut_set = CutSet.from_file(cuts_path)

cluster_counts = Counter()
logging.info("Analyzing codebook")
for cut in tqdm(cut_set):
kmeans = map(int, cut.custom["kmeans"].split())
cluster_counts.update(kmeans)

utilized_clusters = len(cluster_counts)

total_count = sum(cluster_counts.values())
counts = torch.tensor([cluster_counts[i] for i in range(args.num_clusters)])
normalized_counts = (counts / total_count).clamp(min=1e-10)
codebook_entropy = (
-(normalized_counts * normalized_counts.log()).sum()
* torch.log2(torch.tensor(torch.e))
).item()

logging.info(
f"Codebook utilization rate: {utilized_clusters / args.num_clusters:%}"
)
logging.info(f"Codebook entropy: {codebook_entropy}")


if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
analyze_codebook(args)
289 changes: 289 additions & 0 deletions egs/librilight/SSL/local/extract_kmeans.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,289 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import math
import os
from pathlib import Path
from typing import Optional

import fairseq
import joblib
import numpy as np
import torch
from lhotse import CutSet, SupervisionSegment
from lhotse.utils import fastcopy
from tqdm import tqdm

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"


class ApplyKmeans(object):
def __init__(self, km_path):
self.km_model = joblib.load(km_path)
self.C_np = self.km_model.cluster_centers_.transpose()
self.Cnorm_np = (self.C_np**2).sum(0, keepdims=True)

self.C = torch.from_numpy(self.C_np)
self.Cnorm = torch.from_numpy(self.Cnorm_np)
if torch.cuda.is_available():
self.C = self.C.cuda()
self.Cnorm = self.Cnorm.cuda()

def __call__(self, x):
if isinstance(x, torch.Tensor):
dist = (
x.pow(2).sum(1, keepdim=True) - 2 * torch.matmul(x, self.C) + self.Cnorm
)
return dist.argmin(dim=1).cpu().numpy()
else:
dist = (
(x**2).sum(1, keepdims=True)
- 2 * np.matmul(x, self.C_np)
+ self.Cnorm_np
)
return np.argmin(dist, axis=1)


def get_args():
parser = argparse.ArgumentParser()

parser.add_argument(
"--subset",
type=str,
default="small",
)

parser.add_argument(
"--model-path",
type=str,
default="download/hubert_base_ls960.pt",
)

parser.add_argument(
"--kmeans-model-path",
type=str,
default="download/hubert_base_ls960_L9_km500.bin",
)

parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)

parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)

parser.add_argument(
"--window-duration",
type=float,
default=300.0,
)

parser.add_argument(
"--shift-duration",
type=float,
default=250.0,
)

return parser.parse_args()


@torch.no_grad()
def extract_and_save_one_cuts(
raw_cuts_path,
cuts_path,
model,
apply_kmeans,
do_normalize,
window_duration,
shift_duration,
):
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)

logging.info("Extracting kmeans")
cuts = []

assert window_duration >= shift_duration
window_size = int(window_duration * 16000)
shift_size = int(shift_duration * 16000)
overlap_size = window_size - shift_size
out_overlap_size = get_out_length(overlap_size)

for cut in tqdm(cut_set):
assert cut.sampling_rate == 16000, f"Sampling rate: {cut.sampling_rate}"

audio = cut.load_audio()

T = audio.shape[1]
start = 0
kmeans = []
while start < T:
real_window_size = min(window_size, T - start)
audio_window = audio[:, start : start + real_window_size]

x = (
torch.from_numpy(audio_window)
.float()
.to(next(model.parameters()).device)
)
if do_normalize:
x = torch.nn.functional.layer_norm(x, x.shape)

feature, _ = model.extract_features(
source=x,
padding_mask=None,
mask=False,
output_layer=9,
)
feature = feature.squeeze(0)

current_kmeans = apply_kmeans(feature).tolist()

if start == 0:
kmeans.extend(current_kmeans)
else:
kmeans.extend(current_kmeans[out_overlap_size:])

if T - start <= window_size:
break

start += shift_size

kmeans = " ".join(map(str, kmeans))

cut_with_kmeans = fastcopy(
cut,
custom={"kmeans": kmeans},
)
cuts.append(cut_with_kmeans)

cuts = CutSet(cuts)

logging.info(f"Saving to {cuts_path}")
cuts.to_file(cuts_path)


def extract_kmeans(args):
assert args.subset in ("small", "medium", "large"), f"{args.subset}"

output_dir = (
f"data/kmeans/{args.subset}_split" if args.subset != "small" else "data/kmeans"
)
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")

prefix = "librilight"

apply_kmeans = ApplyKmeans(args.kmeans_model_path)
model, _, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[args.model_path]
)
model = model[0].eval().to(device)
do_normalize = task.cfg.normalize

window_duration = args.window_duration
shift_duration = args.shift_duration

if args.subset == "small":
cuts_path = output_dir / f"{prefix}_cuts_{args.subset}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
return

raw_cuts_path = output_dir / f"{prefix}_cuts_{args.subset}_raw.jsonl.gz"
if not raw_cuts_path.is_file():
logging.info(f"{raw_cuts_path} does not exist - skipping it")
return

extract_and_save_one_cuts(
raw_cuts_path,
cuts_path,
model,
apply_kmeans,
do_normalize,
window_duration,
shift_duration,
)
else:
num_digits = 8 # num_digits is fixed by lhotse split-lazy
start = args.start
stop = args.stop
assert stop > start, "stop must be larger than start!"

for i in range(start, stop):
idx = f"{i}".zfill(num_digits)
logging.info(f"Processing {idx}/{stop - 1}")

cuts_path = output_dir / f"{prefix}_cuts_{args.subset}.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue

raw_cuts_path = (
output_dir / f"{prefix}_cuts_{args.subset}_raw.{idx}.jsonl.gz"
)
if not raw_cuts_path.is_file():
logging.info(f"{raw_cuts_path} does not exist - skipping it")
continue

extract_and_save_one_cuts(
raw_cuts_path,
cuts_path,
model,
apply_kmeans,
do_normalize,
window_duration,
shift_duration,
)


def get_out_length(T):
conv_layers = [(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2
for i, (out_channels, kernel_size, stride) in enumerate(conv_layers):
T = math.floor((T - kernel_size) / stride) + 1

return max(0, T)


if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
extract_kmeans(args)
Loading
Loading