Autoware package for Point Pillars. Referenced paper.
CUDA Toolkit v9.0 or v10.0
CUDNN: Tested with v7.3.1
TensorRT: Tested with 5.0.2 -> How to install
-
Install CUDA from this website
-
Install CUDNN
-
Download the TensorRT local repo file that matches the Ubuntu version you are using.
-
Install TensorRT from the Debian local repo package.
$ sudo dpkg -i
nv-tensorrt-repo-ubuntu1x04-cudax.x-trt5.x.x.x-ga-yyyymmdd_1-1_amd64.deb
$ sudo apt-key add /var/nv-tensorrt-repo-cudax.x-trt5.x.x.x-ga-yyyymmdd/7fa2af80.pub
$ sudo apt-get update
$ sudo apt-get install tensorrt
- Download the pretrained file from here.
$ git clone [email protected]:cirpue49/kitti_pretrained_point_pillars.git
-
Launch file:
roslaunch lidar_point_pillars lidar_point_pillars.launch pfe_onnx_file:=/PATH/TO/FILE.onnx rpn_onnx_file:=/PATH/TO/FILE.onnx input_topic:=/points_raw
-
You can launch it through the runtime manager in Computing tab, as well.
/**
* @brief Call PointPillars for the inference.
* @param[in] in_points_array pointcloud array
* @param[in] in_num_points Number of points
* @param[out] out_detections Output bounding box from the network
* @details This is an interface for the algorithm.
*/
void doInference(float* in_points_array, int in_num_points, std::vector<float> out_detections);
-
To display the results in Rviz
objects_visualizer
is required. (Launch file launches automatically this node). -
Pretrained models are available [here], trained with the help of the KITTI dataset. For this reason, these are not suitable for commercial purposes. Derivative works are bound to the BY-NC-SA 3.0 License. (https://creativecommons.org/licenses/by-nc-sa/3.0/)