Skip to content

dynquant - dynamic quantile regression models: CAViaR (different specifications), MVMQCAViaR, and Mixed Data Sampling versions of these models.

Notifications You must be signed in to change notification settings

jstriaukas/dynquant

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 

Repository files navigation

dynquant

Package dynquant implements dynamic quantile models allowing for covariates to be sampled at mixed frequency. Implementation contains the following models:

  1. CAViaR (different specifications, including MIDAS data), see [1].
  2. MVMQCAViaR (including MIDAS data), see [3].
  3. ARDL-MIDAS quantile and MIDAS quantile regression models, see midasml package, and [2, 4, 5].

The main functions are fit_caviar (CAViaR) & fit_mvmqcaviar (MVMQCAViaR) - both have options to fit MIDAS data.

References

[1] Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4), 367-381. https://doi.org/10.1198/073500104000000370

[2] Ghysels, E. (2014). Conditional skewness with quantile regression models: SoFiE Presidential Address and a tribute to Hal White. Journal of Financial Econometrics, 12(4), 620-644. https://doi.org/10.1093/jjfinec/nbu021

[3] White, H., Kim, T. H., & Manganelli, S. (2015). VAR for VaR: Measuring tail dependence using multivariate regression quantiles. Journal of Econometrics, 187(1), 169-188. https://doi.org/10.1016/j.jeconom.2015.02.004

[4] Ghysels, E., Plazzi, A., & Valkanov, R. (2016). Why invest in emerging markets? The role of conditional return asymmetry. The Journal of Finance, 71(5), 2145-2192. https://doi.org/10.1111/jofi.12420

[5] Ghysels, E., Iania, L., Striaukas, J. (2018). Quantile-based Inflation Risk Models https://www.nbb.be/doc/ts/publications/wp/wp349en.pdf

About

dynquant - dynamic quantile regression models: CAViaR (different specifications), MVMQCAViaR, and Mixed Data Sampling versions of these models.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published