Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README_ch.md #66

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions README_ch.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,7 @@
* [Hopper: 建模检测横向移动](https://arxiv.org/pdf/2105.13442.pdf1)
* [通过强化学习寻找有效的安全策略](https://arxiv.org/abs/2009.08120)
* [利用最优停止理论进行入侵防御](https://arxiv.org/abs/2111.00289)
* [网络风险管理:AI 生成的威胁](https://stacks.stanford.edu/file/druid:mw190gm2975/faberSubmission-augmented.pdf)

## [↑](#table-of-contents) 书籍

Expand Down Expand Up @@ -156,8 +157,9 @@

## [↑](#table-of-contents) 教程

* [基于机器学习的密码强度分类](http://fsecurify.com/machine-learning-based-password-strength-checking/)
* [应用机器学习在检测恶意 URL](http://fsecurify.com/using-machine-learning-detect-malicious-urls/)
* [基于机器学习的密码强度分类](http://web.archive.org/web/20170606022743/http://fsecurify.com/machine-learning-based-password-strength-checking/)
* [使用机器学习分类捕获数据包](https://medium.com/@siddharthsatpathy.ss/introducing-flowmeter-97e0507862b6)
* [应用机器学习在检测恶意 URL](http://web.archive.org/web/20170514093208/http://fsecurify.com/using-machine-learning-detect-malicious-urls/)
* [使用深度学习突破验证码](https://deepmlblog.wordpress.com/2016/01/03/how-to-break-a-captcha-system/)
* [网络安全与入侵检测中的数据挖掘](https://www.r-bloggers.com/data-mining-for-network-security-and-intrusion-detection/)
* [应用机器学习提高入侵检测系统](https://securityintelligence.com/applying-machine-learning-to-improve-your-intrusion-detection-system/)
Expand Down Expand Up @@ -192,7 +194,8 @@
## [↑](#table-of-contents) 杂项

* [使用人类专家的输入对网络攻击达到 85% 的预测系统](http://news.mit.edu/2016/ai-system-predicts-85-percent-cyber-attacks-using-input-human-experts-0418)
* [使用机器学习的网络安全项目开源列表](http://www.mlsecproject.org/#open-source-projects)
* [根据包头对数据包分类的机器学习工具](https://github.com/deepfence/FlowMeter)
* [使用机器学习的网络安全项目开源列表](http://www.mlsec.org/)
* [关于机器学习和安全的源码](https://github.com/13o-bbr-bbq/machine_learning_security)
* [精通渗透测试中的机器学习源码](https://github.com/PacktPublishing/Mastering-Machine-Learning-for-Penetration-Testing)
* [用于分析渗透测试的 CNN](https://github.com/BishopFox/eyeballer)
Expand Down