PyTorch implementation of IEEE TPAMI 2020 paper: "Deep Coarse-to-fine Dense Light Field Reconstruction with Flexible Sampling and Geometry-aware Fusion".
- Python 3.6
- PyTorch 1.3
- Matlab (for training/test data generation)
We provide MATLAB code for preparing the training and test data. Please first download light field datasets, and put them into corresponding folders in LFData
.
To reproduce the experimental results presented in the paper, run:
(Ours (fixed) under task 2x2→7x7 for synthetic LF data)
python test_pretrained.py --model_dir pretrained_models --save_dir results --arb_sample 0 --angular_out 7 --angular_in 2 --train_dataset HCI --test_dataset HCI --test_path ./LFData/test_HCI.h5 --psv_range 4 --psv_step 50 --input_ind 0 6 42 48 --save_img 1 --crop 1
(Ours (fixed) under task 2x2→7x7 for Lytro LF data)
python test_pretrained.py --model_dir pretrained_models --save_dir results --arb_sample 0 --angular_out 7 --angular_in 2 --train_dataset SIG --test_dataset 30scenes --test_path ./LFData/test_30scenes.h5 --psv_range 2 --psv_step 50 --input_ind 0 6 42 48 --save_img 1 --crop 1
(Ours (flexible) under task 4→7x7 for synthetic LF data)
python test_pretrained.py --model_dir pretrained_models --save_dir results --arb_sample 1 --angular_out 7 --angular_in 4 --train_dataset HCI --test_dataset HCI --test_path ./LFData/test_HCI.h5 --psv_range 4 --psv_step 50 --input_ind 16 18 30 32 --save_img 1 --crop 1
(Ours (flexible) under task 4→7x7 for Lytro LF data)
python test_pretrained.py --model_dir pretrained_models --save_dir results --arb_sample 1 --angular_out 7 --angular_in 4 --train_dataset SIG --test_dataset 30scenes --test_path ./LFData/test_30scenes.h5 --psv_range 2 --psv_step 50 --input_ind 11 15 33 37 --save_img 1 --crop 1
To re-train the model, run:
(Ours (fixed) under task 2x2→7x7 for synthetic LF data)
python train.py --arb_sample 0 --angular_in 2 --angular_out 7 --dataset HCI --dataset_path ./LFData/train_HCI.h5 --psv_range 4 --psv_step 50 --patch_size 112 --num_cp 100 --lr 6e-5
(Ours (fixed) under task 2x2→7x7 for Lytro LF data)
python train.py --arb_sample 0 --angular_in 2 --angular_out 7 --dataset SIG --dataset_path ./LFData/train_SIG.h5 --psv_range 2 --psv_step 50 --patch_size 64 --num_cp 20 --lr 1e-4
(Ours (flexible) under task 4→7x7 for synthetic LF data)
python train.py --arb_sample 1 --angular_in 4 --angular_out 7 --dataset HCI --dataset_path ./LFData/train_HCI.h5 --psv_range 4 --psv_step 50 --patch_size 64 --num_cp 100 --lr 1e-4
(Ours (flexible) under task 4→7x7 for Lytro LF data)
python train.py --arb_sample 1 --angular_in 4 --angular_out 7 --dataset SIG --dataset_path ./LFData/train_SIG.h5 --psv_range 2 --psv_step 50 --patch_size 64 --num_cp 20 --lr 1e-4