Free Online web tool to annotate images, output format is a list of xml files (Pascal VOC xml format). This image labelling application will help you creating a learning base for image recognition.
Discover an example: http://bipbipavertisseur.alwaysdata.net/image_annotations_v2.0_d1
To customize the directories used, edit the PHP file inc/configuration.php
<?php
# Image path to be used in the HTML client
$IMAGE_WEB_DIR = "data/images";
# Image path for internal PHP use
$IMAGE_ROOT_DIR = "../data/images";
$ANNOTATIONS_DIR = "../data/annotations";
# Not annotated image 80% to be presented to user
$ratio_new_old = 80;
?>
Images to be annotated are located in data/images
The list of classes can be customized in the file resources/list_of_tags.json
[
{"name": "Long Beak Bird", "icon": "resources/tag_examples/long_beak.jpg"},
{"name": "Eagle", "icon": "resources/tag_examples/eagle.jpg"},
{"name": "Parrot", "icon": "resources/tag_examples/parrot.jpg"},
{"name": "Baby Bird", "icon": "resources/tag_examples/baby_bird.jpg"}
]
Each image will generate one XML file in the directory data/annotations
This format is a standard and can be easily read from Tensorflow Object Detection API
<?xml version="1.0"?>
<annotation>
<folder>images</folder>
<filename>pexels-photo-60091.jpg</filename>
<path/>
<source>
<database>Unknown</database>
</source>
<size>
<width>1125</width>
<height>750</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>Bird</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>488</xmin>
<ymin>245.5</ymin>
<xmax>674</xmax>
<ymax>601.5</ymax>
</bndbox>
</object>
</annotation>
Generate TFRecord file format
# From shell/ (by default config)
python convert_tag_json_to_pbtxt.py
file shell/label_map.pbtxt
should be generate
# From shell/ (by default config)
# note:tensorflow should be installed success
python convert_voc_to_rf_record.py
file shell/train.record
should be generate
Many thanks to the contributors of these useful libraries:
- jQuery-select-areas available on GitHub
- EasyAutocomplete available on GitHub
I modified some pieces of code to adapt the features to my needs.
Code released under the MIT license.