Skip to content

jayliu0313/CVFinal_FaceParsing

Repository files navigation

Face parsing

A Pytorch implementation face parsing model trained by CelebAMask-HQ, based on EHANet.

Dependencies

  • Pytorch 1.7.1
  • numpy
  • Python3
  • Pillow
  • opencv-python
  • tenseorboardX
  • pandas
  • (Optional) inplace_abn

Preprocessing

  • Prepare training data: -- download CelebAMask-HQ dataset
  • Move the mask folder, the image folder, and CelebA-HQ-to-CelebA-mapping.txt under ./Data_preprocessing
  • Run python g_mask.py to merge separate labels. Support multiprocess, use python g_mask.py --num_process 4 for 4 processes.
  • Run python g_partition.py to split train set and test set.

Training

  • Run bash run_train.sh #GPU_USE_INDEX, for example, bash run_train.sh 0.
  • Add --parallel True in bash script if you want to use multi-GPU for training.

Well-trained model

  • The model can be downloaded here (96M).
  • The model (#num.pth) should be put under ./models/FaceParseNet50/
  • Mask labels are defined as following:
- Label list (19 classes) -
0: 'background' 1: 'skin' 2: 'nose'
3: 'eye_g' 4: 'l_eye' 5: 'r_eye'
6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
9: 'r_ear' 10: 'mouth' 11: 'u_lip'
12: 'l_lip' 13: 'hair' 14: 'hat'
15: 'ear_r' 16: 'neck_l' 17: 'neck'
18: 'cloth' - -
  • Overall Per-pixel Acc: 94.26;
  • Mean IoU: 76.64;
  • Overall F1 Score: 85.33.
  • Note: train and evaluate according to CelebA train/test split.

Testing & Color visualization

  • Run bash run_test.sh #GPU_num #Model_num, for example, bash run_test.sh 0 32, which uses epoch 32 model file (32_G.pth).
  • Pred results will be saved in ./test_pred_results
  • Color visualized results will be saved in ./test_color_visualize
  • Another way for color visualization without using GPU: Run python ./Data_preprocessing/g_color.py

Visual Results

  • OriginalImg vs. GroundTruth vs. PredResult
sample1_img-gt-pred sample2_img-gt-pred

References

@article{CelebAMask-HQ,
  title={MaskGAN: Towards Diverse and Interactive Facial Image Manipulation},
  author={Lee, Cheng-Han and Liu, Ziwei and Wu, Lingyun and Luo, Ping},
  journal={arXiv preprint arXiv:1907.11922},
  year={2019},
  website={https://github.com/switchablenorms/CelebAMask-HQ}
}
@article{luo2020ehanet,
  title={EHANet: An Effective Hierarchical Aggregation Network for Face Parsing},
  author={Luo, Ling and Xue, Dingyu and Feng, Xinglong},
  journal={Applied Sciences},
  volume={10},
  number={9},
  pages={3135},
  year={2020},
  publisher={Multidisciplinary Digital Publishing Institute},
  website={https://github.com/JACKYLUO1991/FaceParsing}
}
@code{face-parsing.PyTorch,
  author={zllrunning},
  year={2019},
  website={https://github.com/zllrunning/face-parsing.PyTorch}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published