Skip to content

jareducherek/drive_segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Driving Segmentation

A semantic segmentation project for UT Digital Video Processing, using @comma.ai's comma10k dataset.

We updated the original comma10k-baseline to pytorch lightning 1.0, and used Trans2Seg implemented in a fork of the pytorch segmentation models repo. This transformer model with a ResNet backbone reaches 0.073 validation CCE loss.

Installation instructions

  • clone [my fork] of pytorch_segmentation.models
  • navigate to the fork and pip install -e .
  • clone this repo
  • navigate to this repo and install required packages
make create_environment
conda activate drive_segmentation
make requirements

How to use

This uses one stage of 512x512 images for training.

python3 train_lit_model.py --backbone efficientnet-b4 --version second-stage --gpus 2 --batch-size 7 --learning-rate 5e-5 --epochs 30 --height 512 --width 512 --augmentation-level hard

Dependecies

Python 3.5+, pytorch 1.6+ and dependencies listed in requirements.txt.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published