-
Notifications
You must be signed in to change notification settings - Fork 2.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Modular backend - T2I Adapter (#6662)
## Summary T2I Adapter code from #6577. ## Related Issues / Discussions #6606 https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d ## QA Instructions Run with and without set `USE_MODULAR_DENOISE` environment. ## Merge Plan Nope. If you think that there should be some kind of tests - feel free to add. ## Checklist - [x] _The PR has a short but descriptive title, suitable for a changelog_ - [ ] _Tests added / updated (if applicable)_ - [ ] _Documentation added / updated (if applicable)_
- Loading branch information
Showing
2 changed files
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
120 changes: 120 additions & 0 deletions
120
invokeai/backend/stable_diffusion/extensions/t2i_adapter.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
from __future__ import annotations | ||
|
||
import math | ||
from typing import TYPE_CHECKING, List, Optional, Union | ||
|
||
import torch | ||
from diffusers import T2IAdapter | ||
from PIL.Image import Image | ||
|
||
from invokeai.app.util.controlnet_utils import prepare_control_image | ||
from invokeai.backend.model_manager import BaseModelType | ||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode | ||
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType | ||
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback | ||
|
||
if TYPE_CHECKING: | ||
from invokeai.app.invocations.model import ModelIdentifierField | ||
from invokeai.app.services.shared.invocation_context import InvocationContext | ||
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES | ||
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext | ||
|
||
|
||
class T2IAdapterExt(ExtensionBase): | ||
def __init__( | ||
self, | ||
node_context: InvocationContext, | ||
model_id: ModelIdentifierField, | ||
image: Image, | ||
weight: Union[float, List[float]], | ||
begin_step_percent: float, | ||
end_step_percent: float, | ||
resize_mode: CONTROLNET_RESIZE_VALUES, | ||
): | ||
super().__init__() | ||
self._node_context = node_context | ||
self._model_id = model_id | ||
self._image = image | ||
self._weight = weight | ||
self._resize_mode = resize_mode | ||
self._begin_step_percent = begin_step_percent | ||
self._end_step_percent = end_step_percent | ||
|
||
self._adapter_state: Optional[List[torch.Tensor]] = None | ||
|
||
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally. | ||
model_config = self._node_context.models.get_config(self._model_id.key) | ||
if model_config.base == BaseModelType.StableDiffusion1: | ||
self._max_unet_downscale = 8 | ||
elif model_config.base == BaseModelType.StableDiffusionXL: | ||
self._max_unet_downscale = 4 | ||
else: | ||
raise ValueError(f"Unexpected T2I-Adapter base model type: '{model_config.base}'.") | ||
|
||
@callback(ExtensionCallbackType.SETUP) | ||
def setup(self, ctx: DenoiseContext): | ||
t2i_model: T2IAdapter | ||
with self._node_context.models.load(self._model_id) as t2i_model: | ||
_, _, latents_height, latents_width = ctx.inputs.orig_latents.shape | ||
|
||
self._adapter_state = self._run_model( | ||
model=t2i_model, | ||
image=self._image, | ||
latents_height=latents_height, | ||
latents_width=latents_width, | ||
) | ||
|
||
def _run_model( | ||
self, | ||
model: T2IAdapter, | ||
image: Image, | ||
latents_height: int, | ||
latents_width: int, | ||
): | ||
# Resize the T2I-Adapter input image. | ||
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the | ||
# result will match the latent image's dimensions after max_unet_downscale is applied. | ||
input_height = latents_height // self._max_unet_downscale * model.total_downscale_factor | ||
input_width = latents_width // self._max_unet_downscale * model.total_downscale_factor | ||
|
||
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare | ||
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the | ||
# T2I-Adapter model. | ||
# | ||
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many | ||
# of the same requirements (e.g. preserving binary masks during resize). | ||
t2i_image = prepare_control_image( | ||
image=image, | ||
do_classifier_free_guidance=False, | ||
width=input_width, | ||
height=input_height, | ||
num_channels=model.config["in_channels"], | ||
device=model.device, | ||
dtype=model.dtype, | ||
resize_mode=self._resize_mode, | ||
) | ||
|
||
return model(t2i_image) | ||
|
||
@callback(ExtensionCallbackType.PRE_UNET) | ||
def pre_unet_step(self, ctx: DenoiseContext): | ||
# skip if model not active in current step | ||
total_steps = len(ctx.inputs.timesteps) | ||
first_step = math.floor(self._begin_step_percent * total_steps) | ||
last_step = math.ceil(self._end_step_percent * total_steps) | ||
if ctx.step_index < first_step or ctx.step_index > last_step: | ||
return | ||
|
||
weight = self._weight | ||
if isinstance(weight, list): | ||
weight = weight[ctx.step_index] | ||
|
||
adapter_state = self._adapter_state | ||
if ctx.conditioning_mode == ConditioningMode.Both: | ||
adapter_state = [torch.cat([v] * 2) for v in adapter_state] | ||
|
||
if ctx.unet_kwargs.down_intrablock_additional_residuals is None: | ||
ctx.unet_kwargs.down_intrablock_additional_residuals = [v * weight for v in adapter_state] | ||
else: | ||
for i, value in enumerate(adapter_state): | ||
ctx.unet_kwargs.down_intrablock_additional_residuals[i] += value * weight |