Contact author: click here
The data (from scannet) is organized as follows:
<scene_name>
|-- cameras_sphere.npz # camera parameters
|-- image
|-- 0000.png # target image for each view
|-- 0001.png
...
|-- depth
|-- 0000.png # target depth for each view
|-- 0001.png
...
|-- pose
|-- 0000.txt # camera pose for each view
|-- 0001.txt
...
|-- pred_normal
|-- 0000.npz # predicted normal for each view
|-- 0001.npz
...
|-- xxx.ply # GT mesh or point cloud from MVS
|-- trans_n2w.txt # transformation matrix from normalized coordinates to world coordinates
pip install -r requirements.txt
python ./exp_runner.py --mode train --conf ./confs/depth-neus.conf --gpu 0 --scene_name your_scene_name
python exp_runner.py --mode validate_mesh --conf ./confs/depth-neus.conf --is_continue
python ./exp_evaluation.py --mode eval_3D_mesh_metrics
If you use the code, please cite the following paper:
@article{jiang2023depthneus,
title={Depth-NeuS: Neural Implicit Surfaces Learning for Multi-view Reconstruction Based on Depth Information Optimization},
author={Hanqi Jiang and Cheng Zeng and Runnan Chen and Shuai Liang and Yinhe Han and Yichao Gao and Conglin Wang},
year={2023},
eprint={2303.17088},
archivePrefix={arXiv},
primaryClass={cs.CV}
}