Skip to content

Commit

Permalink
update Ballgown DE
Browse files Browse the repository at this point in the history
  • Loading branch information
obigriffith committed Jun 19, 2024
1 parent c5580f6 commit bb35217
Showing 1 changed file with 28 additions and 15 deletions.
43 changes: 28 additions & 15 deletions _posts/0003-04-01-DE_Visualization_Ballgown.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@ library(genefilter)
library(dplyr)
library(devtools)

#designate output file
outfile="~/workspace/rnaseq/de/ballgown/ref_only/Tutorial_Part2_ballgown_output.pdf"
# set the working directory
setwd("~/workspace/rnaseq/de/ballgown/ref_only")

```

Next we'll load our data into R.
Expand Down Expand Up @@ -75,7 +76,8 @@ transcript_expression = as.data.frame(texpr(bg))

#View expression values for the transcripts of a particular gene symbol of chromosome 22. e.g. 'TST'
#First determine the transcript_ids in the data.frame that match 'TST', aka. ENSG00000128311, then display only those rows of the data.frame
i=bg_table[,"gene_id"]=="ENSG00000128311"
#i=bg_table[,"gene_id"]=="ENSG00000128311"
i=bg_table[,"gene_name"]=="TST"
bg_table[i,]

# Display the transcript ID for a single row of data
Expand All @@ -85,17 +87,19 @@ ballgown::transcriptNames(bg)[2763]
ballgown::geneNames(bg)[2763]

#What if we want to view values for a list of genes of interest all at once?
#genes_of_interest = c("TST", "MMP11", "LGALS2", "ISX")
genes_of_interest = c("ENSG00000128311","ENSG00000099953","ENSG00000100079","ENSG00000175329")
i = bg_table[,"gene_id"] %in% genes_of_interest
genes_of_interest = c("TST", "MMP11", "LGALS2", "ISX")
#genes_of_interest = c("ENSG00000128311","ENSG00000099953","ENSG00000100079","ENSG00000175329")
#i = bg_table[,"gene_id"] %in% genes_of_interest
i = bg_table[,"gene_name"] %in% genes_of_interest

bg_table[i,]

# Load the transcript to gene index from the ballgown object
transcript_gene_table = indexes(bg)$t2g
head(transcript_gene_table)

#Each row of data represents a transcript. Many of these transcripts represent the same gene. Determine the numbers of transcripts and unique genes
length(row.names(transcript_gene_table)) #Transcript count
length(unique(transcript_gene_table[,"t_id"])) #Transcript count
length(unique(transcript_gene_table[,"g_id"])) #Unique Gene count

# Extract FPKM values from the 'bg' object
Expand All @@ -116,51 +120,60 @@ Now we'll start to generate figures with the following R code.

```R

# Open a PDF file where we will save some plots. We will save all figures and then view the PDF at the end
pdf(file=outfile)

#### Plot #1 - the number of transcripts per gene.
#Many genes will have only 1 transcript, some genes will have several transcripts
#Use the 'table()' command to count the number of times each gene symbol occurs (i.e. the # of transcripts that have each gene symbol)
#Then use the 'hist' command to create a histogram of these counts
#How many genes have 1 transcript? More than one transcript? What is the maximum number of transcripts for a single gene?
pdf(file="TranscriptCountDistribution.pdf")
counts=table(transcript_gene_table[,"g_id"])
c_one = length(which(counts == 1))
c_more_than_one = length(which(counts > 1))
c_max = max(counts)
hist(counts, breaks=50, col="bisque4", xlab="Transcripts per gene", main="Distribution of transcript count per gene")
legend_text = c(paste("Genes with one transcript =", c_one), paste("Genes with more than one transcript =", c_more_than_one), paste("Max transcripts for single gene = ", c_max))
legend("topright", legend_text, lty=NULL)
dev.off()

#### Plot #2 - the distribution of transcript sizes as a histogram
#In this analysis we supplied StringTie with transcript models so the lengths will be those of known transcripts
#However, if we had used a de novo transcript discovery mode, this step would give us some idea of how well transcripts were being assembled
#If we had a low coverage library, or other problems, we might get short 'transcripts' that are actually only pieces of real transcripts

pdf(file="TranscriptLengthDistribution.pdf")
hist(bg_table$length, breaks=50, xlab="Transcript length (bp)", main="Distribution of transcript lengths", col="steelblue")
dev.off()

#### Plot #3 - distribution of gene expression levels for each sample
# Create boxplots to display summary statistics for the FPKM values for each sample
# set color based on pheno_data$type which is UHR vs. HBR
# set labels perpendicular to axis (las=2)
# set ylab to indicate that values are log2 transformed
pdf(file="All_samples_FPKM_boxplots.pdf")
boxplot(fpkm,col=as.numeric(as.factor(pheno_data$type))+1,las=2,ylab='log2(FPKM+1)')
dev.off()

#### Plot 4 - BoxPlot comparing the expression of a single gene for all replicates of both conditions
# set border color for each of the boxplots
# set title (main) to gene : transcript
# set x label to Type
# set ylab to indicate that values are log2 transformed
boxplot(fpkm[2763,] ~ pheno_data$type, border=c(2,3), main=paste(ballgown::geneNames(bg)[2763],' : ', ballgown::transcriptNames(bg)[2763]),pch=19, xlab="Type", ylab='log2(FPKM+1)')

pdf(file="TST_ENST00000249042_boxplot.pdf")
transcript=which(ballgown::transcriptNames(bg)=="ENST00000249042")[[1]]
boxplot(fpkm[transcript,] ~ pheno_data$type, border=c(2,3), main=paste(ballgown::geneNames(bg)[transcript],': ', ballgown::transcriptNames(bg)[transcript]),pch=19, xlab="Type", ylab='log2(FPKM+1)')

# Add the FPKM values for each sample onto the plot
# set plot symbol to solid circle, default is empty circle
points(fpkm[2763,] ~ jitter(c(2,2,2,1,1,1)), col=c(2,2,2,1,1,1)+1, pch=16)
points(fpkm[transcript,] ~ jitter(c(2,2,2,1,1,1)), col=c(2,2,2,1,1,1)+1, pch=16)
dev.off()


#### Plot 5 - Plot of transcript structures observed in each replicate and color transcripts by expression level
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('TST in all HBR samples'), sample=c('HBR_Rep1', 'HBR_Rep2', 'HBR_Rep3'), labelTranscripts=TRUE)
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('TST in all UHR samples'), sample=c('UHR_Rep1', 'UHR_Rep2', 'UHR_Rep3'), labelTranscripts=TRUE)

pdf(file="TST_transcript_structures_expression.pdf")

plotTranscripts(ballgown::geneIDs(bg)[transcript], bg, main=c('TST in all HBR samples'), sample=c('HBR_Rep1', 'HBR_Rep2', 'HBR_Rep3'), labelTranscripts=TRUE)
plotTranscripts(ballgown::geneIDs(bg)[transcript], bg, main=c('TST in all UHR samples'), sample=c('UHR_Rep1', 'UHR_Rep2', 'UHR_Rep3'), labelTranscripts=TRUE)

# Close the PDF device where we have been saving our plots
dev.off()
Expand Down

0 comments on commit bb35217

Please sign in to comment.