Skip to content

A Python application that loads and processes both web pages and local documents, indexing their content using embeddings, and enabling semantic search queries.

License

Notifications You must be signed in to change notification settings

fredkzk/rag-retriever

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAG Retriever

A Python application that loads and processes both web pages and local documents, indexing their content using embeddings, and enabling semantic search queries. Built with a modular architecture using OpenAI embeddings and Chroma vector store.

What It Does

RAG Retriever enhances your AI coding assistant (like aider or Cursor) by giving it access to:

  • Documentation about new technologies and features
  • Your organization's architecture decisions and coding standards
  • Internal APIs and tools documentation
  • Any other knowledge that isn't part of the LLM's training data

This helps prevent hallucinations and ensures your AI assistant follows your team's practices.

💡 Note: While our examples focus on AI coding assistants, RAG Retriever can enhance any AI-powered development environment or tool that can execute command-line applications. Use it to augment IDEs, CLI tools, or any development workflow that needs reliable, up-to-date information.

Prerequisites

  • Python 3.10-3.12 (Download from python.org)

  • pipx (Install with one of these commands):

    # On MacOS
    brew install pipx
    
    # On Windows/Linux
    python -m pip install --user pipx

System Requirements

The application uses Playwright with Chromium for web crawling:

  • Chromium browser is automatically installed during package installation
  • Sufficient disk space for Chromium (~200MB)
  • Internet connection for initial setup and crawling

Note: The application will automatically download and manage Chromium installation.


🚀 Ready to Try It?

Head over to our Getting Started Guide for a quick setup that will get your AI assistant using the RAG Retriever in 5 minutes!


Installation

Install RAG Retriever as a standalone application:

pipx install rag-retriever

This will:

  • Create an isolated environment for the application
  • Install all required dependencies
  • Install Chromium browser automatically
  • Make the rag-retriever command available in your PATH

How to Upgrade

To upgrade RAG Retriever to the latest version:

pipx upgrade rag-retriever

This will:

  • Upgrade the package to the latest available version
  • Preserve your existing configuration and data
  • Update any new dependencies automatically

After installation, initialize the configuration:

# Initialize configuration files
rag-retriever --init

This creates:

  • A configuration file at ~/.config/rag-retriever/config.yaml (Unix/Mac) or %APPDATA%\rag-retriever\config.yaml (Windows)
  • A .env file in the same directory for your OpenAI API key

Setting up your API Key

Add your OpenAI API key to the .env file:

OPENAI_API_KEY=your-api-key-here

Customizing Configuration

All settings are in config.yaml. For detailed information about all configuration options, best practices, and example configurations, see our Configuration Guide.

Key configuration sections include:

# Vector store settings
vector_store:
  embedding_model: "text-embedding-3-large"
  embedding_dimensions: 3072
  chunk_size: 1000
  chunk_overlap: 200

# Local document processing
document_processing:
  supported_extensions:
    - ".md"
    - ".txt"
    - ".pdf"
  pdf_settings:
    max_file_size_mb: 50
    extract_images: false
    ocr_enabled: false
    languages: ["eng"]
    strategy: "fast"
    mode: "elements"

# Search settings
search:
  default_limit: 8
  default_score_threshold: 0.3

Data Storage

The vector store database is stored at:

  • Unix/Mac: ~/.local/share/rag-retriever/chromadb/
  • Windows: %LOCALAPPDATA%\rag-retriever\chromadb/

This location is automatically managed by the application and should not be modified directly.

Uninstallation

To completely remove RAG Retriever:

# Remove the application and its isolated environment
pipx uninstall rag-retriever

# Remove Playwright browsers
python -m playwright uninstall chromium

# Optional: Remove configuration and data files
# Unix/Mac:
rm -rf ~/.config/rag-retriever ~/.local/share/rag-retriever
# Windows (run in PowerShell):
Remove-Item -Recurse -Force "$env:APPDATA\rag-retriever"
Remove-Item -Recurse -Force "$env:LOCALAPPDATA\rag-retriever"

Development Setup

If you want to contribute to RAG Retriever or modify the code:

# Clone the repository
git clone https://github.com/codingthefuturewithai/rag-retriever.git
cd rag-retriever

# Create and activate virtual environment
python -m venv venv
source venv/bin/activate  # Unix/Mac
venv\Scripts\activate     # Windows

# Install in editable mode
pip install -e .

# Initialize user configuration
./scripts/run-rag.sh --init  # Unix/Mac
scripts\run-rag.bat --init   # Windows

Usage Examples

Local Document Processing

# Process a single file
rag-retriever --ingest-file path/to/document.pdf

# Process all supported files in a directory
rag-retriever --ingest-directory path/to/docs/

# Enable OCR for scanned documents (update config.yaml first)
# Set in config.yaml:
# document_processing.pdf_settings.ocr_enabled: true
rag-retriever --ingest-file scanned-document.pdf

# Enable image extraction from PDFs (update config.yaml first)
# Set in config.yaml:
# document_processing.pdf_settings.extract_images: true
rag-retriever --ingest-file document-with-images.pdf

Web Content Fetching

# Basic fetch
rag-retriever --fetch https://example.com

# With depth control
rag-retriever --fetch https://example.com --max-depth 2

# Minimal output mode
rag-retriever --fetch https://example.com --verbose false

Searching Content

# Basic search
rag-retriever --query "How do I get started?"

# With truncated content
rag-retriever --query "How do I get started?" --truncate

# With custom result limit
rag-retriever --query "deployment options" --limit 5

# With minimum relevance score
rag-retriever --query "advanced configuration" --score-threshold 0.5

# JSON output format
rag-retriever --query "API reference" --json

Configuration Options

The configuration file (config.yaml) is organized into several sections:

Vector Store Settings

vector_store:
  persist_directory: null # Set automatically to OS-specific path
  embedding_model: "text-embedding-3-large"
  embedding_dimensions: 3072
  chunk_size: 1000 # Size of text chunks for indexing
  chunk_overlap: 200 # Overlap between chunks

Document Processing Settings

document_processing:
  # Supported file extensions
  supported_extensions:
    - ".md"
    - ".txt"
    - ".pdf"

  # Patterns to exclude from processing
  excluded_patterns:
    - ".*"
    - "node_modules/**"
    - "__pycache__/**"
    - "*.pyc"
    - ".git/**"

  # Fallback encodings for text files
  encoding_fallbacks:
    - "utf-8"
    - "latin-1"
    - "cp1252"

  # PDF processing settings
  pdf_settings:
    max_file_size_mb: 50
    extract_images: false
    ocr_enabled: false
    languages: ["eng"]
    password: null
    strategy: "fast" # Options: fast, accurate
    mode: "elements" # Options: single_page, paged, elements

Content Processing Settings

content:
  chunk_size: 2000
  chunk_overlap: 400
  # Text splitting separators (in order of preference)
  separators:
    - "\n## " # h2 headers (strongest break)
    - "\n### " # h3 headers
    - "\n#### " # h4 headers
    - "\n- " # bullet points
    - "\n" # alternative bullet points
    - "\n\n" # paragraphs
    - ". " # sentences (weakest break)

Search Settings

search:
  default_limit: 8 # Default number of results
  default_score_threshold: 0.3 # Minimum relevance score

Browser Settings (Web Crawling)

browser:
  wait_time: 2 # Base wait time in seconds
  viewport:
    width: 1920
    height: 1080
  delays:
    before_request: [1, 3] # Min and max seconds
    after_load: [2, 4]
    after_dynamic: [1, 2]
  launch_options:
    headless: true
    channel: "chrome"
  context_options:
    bypass_csp: true
    java_script_enabled: true

Understanding Search Results

Search results include relevance scores based on cosine similarity:

  • Scores range from 0 to 1, where 1 indicates perfect similarity
  • Default threshold is 0.3 (configurable via search.default_score_threshold)
  • Typical interpretation:
    • 0.7+: Very high relevance (nearly exact matches)
    • 0.6 - 0.7: High relevance
    • 0.5 - 0.6: Good relevance
    • 0.3 - 0.5: Moderate relevance
    • Below 0.3: Lower relevance

Features

  • Local Document Loading: Load markdown, text, and PDF files from local directories.

    • Single File and Directory Loading: Easily load individual files or entire directories with support for multithreading and progress indication.
    • PDF Processing: Extract text and images from PDFs using multiple loaders, with optional OCR for scanned documents.
    • Configurable Settings: Customize supported file types, PDF processing options, and more through configuration files.
  • Error Handling: Robust error handling for unsupported file types and missing files, with detailed logging for troubleshooting.

  • Configuration: Flexible configuration options for document processing, including supported extensions and PDF settings.

For more detailed usage instructions and examples, please refer to the local-document-loading.md documentation.

Project Structure

rag-retriever/
├── rag_retriever/         # Main package directory
│   ├── config/           # Configuration settings
│   ├── crawling/         # Web crawling functionality
│   ├── vectorstore/      # Vector storage operations
│   ├── search/          # Search functionality
│   └── utils/           # Utility functions

Dependencies

Key dependencies include:

  • openai: For embeddings generation (text-embedding-3-large model)
  • chromadb: Vector store implementation with cosine similarity
  • selenium: JavaScript content rendering
  • beautifulsoup4: HTML parsing
  • python-dotenv: Environment management

Notes

  • Uses OpenAI's text-embedding-3-large model for generating embeddings by default
  • Content is automatically cleaned and structured during indexing
  • Implements URL depth-based crawling control
  • Vector store persists between runs unless explicitly deleted
  • Uses cosine similarity for more intuitive relevance scoring
  • Minimal output by default with --verbose flag for troubleshooting
  • Full content display by default with --truncate option for brevity
  • ⚠️ Changing chunk size/overlap settings after ingesting content may lead to inconsistent search results. Consider reprocessing existing content if these settings must be changed.

Future Development

RAG Retriever is under active development with many planned improvements. We maintain a detailed roadmap of future enhancements in our Future Features document, which outlines:

  • Document lifecycle management improvements
  • Integration with popular documentation platforms
  • Vector store analysis and visualization
  • Search quality enhancements
  • Performance optimizations

While the current version is fully functional for core use cases, there are currently some limitations that will be addressed in future releases. Check the future features document for details on potential upcoming improvements.

Contributing

Please read CONTRIBUTING.md for details on our code of conduct and the process for submitting pull requests.

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

A Python application that loads and processes both web pages and local documents, indexing their content using embeddings, and enabling semantic search queries.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.1%
  • Shell 1.5%
  • Batchfile 0.4%