-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Proteomics scripts for the E-Stub paper
- Loading branch information
Showing
2 changed files
with
519 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
##### | ||
# IP script adapted from TMT | ||
# Fischer lab | ||
# Dependencies: Fischer lab helper functions | ||
# This script is for basic extraction of expression values and limma statistical analysis from PD proteins files | ||
|
||
# Define variables | ||
### load PD data | ||
D.exp <- read.delim("~/", header=TRUE, sep="\t", as.is=TRUE) | ||
dim(D.exp) | ||
|
||
#number of minimal spectral counts | ||
sc <- 2 | ||
#dataset prefix | ||
pre <- "file-name" | ||
# use intensities (1) or spectral counts (2) as weights for limma | ||
w <- 1 | ||
# type of input file (1) PD21, (2) MQ15, (3) Gygi core quant (4) other | ||
qfiletype <- 4 | ||
|
||
|
||
|
||
# load helper functions | ||
source("~/Dropbox (Partners HealthCare)/R/R-helper/map2col.R") | ||
source("~/Dropbox (Partners HealthCare)/R/R-helper/plotPairwiseCorr.R") | ||
source("~/Dropbox (Partners HealthCare)/R/R-helper/mypairs.R") | ||
library("limma") | ||
library("dplyr") | ||
|
||
|
||
|
||
# Remove protein contaminants | ||
sum(D.exp$Contaminant=="True") | ||
D.exp <- D.exp[!D.exp$Contaminant=="True",] | ||
|
||
# Identify reporter ion channels | ||
colnames(D.exp) | ||
if(qfiletype==1){ | ||
channels <- grep("^Abundance.F..(126|127|128|129|130|131)", colnames(D.exp), value=TRUE) | ||
} else if(qfiletype==2){ | ||
channels <- grep("^Reporter.intensity.[0-9].", colnames(D.exp), value=TRUE) | ||
} else if(qfiletype==3){ | ||
channels <- grep("*(126|127|128|129|130|131)", colnames(D.exp), value=TRUE) | ||
} else{ | ||
channels <- grep("^Abundance.F...", colnames(D.exp), value=TRUE) | ||
} | ||
|
||
# identify number of multiplexing channels | ||
tmt <- length(channels) | ||
tmt | ||
|
||
|
||
# Identify contrasts | ||
channels | ||
temp <- vector(mode="character", length = length(channels)) | ||
for (i in 1:length(channels)) { | ||
temp[i] <- substr(channels[i], | ||
regexpr("Sample.", channels[i])[1] + nchar("Sample."), # character index of cpd name start | ||
nchar(channels[i])) # character index of cpd name end | ||
} | ||
temp2 <- unique(temp) | ||
contrasts <- temp2[!grepl("DMSO", temp2)] | ||
rm(i, temp, temp2) | ||
contrasts | ||
|
||
|
||
|
||
# Subset data frame | ||
colnames(D.exp) | ||
sel1 <- colnames(D.exp)[colnames(D.exp)%in% "Accession"] | ||
sel2 <- grep("^Gene.Symbol", colnames(D.exp), value = TRUE) | ||
sel3 <- grep("^Description", colnames(D.exp), value = TRUE) | ||
sel4 <- grep("^Number.of.Unique.Peptides", colnames(D.exp), value = TRUE) | ||
sel5 <- c(sel1, sel2, sel3, sel4, channels) | ||
sel5 | ||
D <- D.exp[, sel5] | ||
rownames(D) <- D[,1] | ||
rm(sel1,sel2,sel3,sel4,sel5) | ||
|
||
colnames(D) | ||
|
||
|
||
###### cleanup data ###### | ||
# Remove data with unique peptides below threshold | ||
sum(!D$Number.of.Unique.Peptides >= sc) | ||
D <- D[D$Number.of.Unique.Peptides >= sc,] | ||
|
||
colnames(D) | ||
|
||
|
||
# add imputation method here if needed | ||
|
||
|
||
###### Normalize and scale data. Create relative abundance matrix ############# | ||
# Normalize and scale data to create relative abundance matrix | ||
x <- colSums(D[,c(5:(5+tmt-1))]) | ||
x <- x/max(x) | ||
y <- t(apply(D[,c(5:(5+tmt-1))],x, "/", x)) | ||
Dn <- D | ||
Dn[,c(5:(5+tmt-1))] <- y | ||
|
||
|
||
# create matrix for abundance and plot unscaled data | ||
A <- as.matrix(Dn[,c(5:(5+tmt-1))]) | ||
summary(A) | ||
png(filename = paste("plots/",pre,"_unscaled_intensities_pairs.png", sep = ""), width = 1200, height = 1200) | ||
mypairs(log10(A)) | ||
dev.off() | ||
|
||
|
||
# Scaling protein TMT channels to 100 | ||
x <- rowSums(A) | ||
ZZ <- A/x | ||
zz <- ZZ*100 | ||
# create matrix for relative abundance | ||
a <- zz | ||
rm(zz); rm(ZZ); rm(x) | ||
|
||
|
||
######## Use limma to generate moderated t-statistic p-values ###### | ||
### Define experimental factors | ||
colnames(a) | ||
contrast <- "Sample" | ||
#a <- a_backup | ||
colnames(a) | ||
a <- a[,c(1:6)] | ||
treat <- factor(ifelse(grepl(contrast, colnames(a)),"DRUG","CTRL"), levels=c("CTRL","DRUG")) | ||
ctrl <- factor(ifelse(grepl("DMSO",colnames(a)),"DMSO","TREAT"), levels=c("DMSO", "TREAT")) | ||
treat | ||
ctrl | ||
|
||
######## LIMMA MODERATED T-STATISTICS ##### | ||
#design <- model.matrix(~ treat + ctrl) # define matrix | ||
design <- model.matrix(~ treat) # define matrix | ||
rownames(design) <- colnames(a) # assign names | ||
|
||
design | ||
### matrix must be of full rank: Matrix::rankMatrix(design)==ncol(design) | ||
# rund ebayes fit with limma | ||
if(w == 1){ | ||
fit <- lmFit(a, design=design, weights=rowSums(A)) # with intensities as weight | ||
} else { | ||
fit <- lmFit(a, design=design, weights=D$Quantified.spectral.counts) # with spectral counts as weight | ||
} | ||
fit <- eBayes(fit) | ||
tt <- topTable(fit, coef="treatDRUG", genelist=rownames(a), number=nrow(a)) | ||
options(width=160); head(tt, n=50) | ||
|
||
|
||
|
||
######Add gene names to tt for PD1 data - adapt for Gygi/MQ####### | ||
combineBy <- "Accession" | ||
identifier <- D[,c(1,2)] | ||
tt2 <- tt | ||
colnames(tt2) <- c("Accession", "logFC", "AveExpr", "t", "P.Value", "adj.P.Val", "B") | ||
ids <- unique(c(tt2[,combineBy], identifier[,combineBy])) | ||
tt3 <- cbind(tt2[match(ids, tt2[,combineBy]),], identifier[match(ids, identifier[,combineBy]),]) | ||
tt[,1] <- tt3[,9] | ||
rm(tt2);rm(tt3) | ||
|
||
#Write hit table | ||
write.csv(tt, file=paste("tables/",pre, "_Limma_output_",contrast,"_vs_CTRLs.csv")) | ||
|
||
|
||
######################################################################## | ||
###### MAKE PLOTS FOR LIMMA ANALYSIS ################################### | ||
######################################################################## | ||
# Plot & Hits by p.value | ||
# Define p-value cut-off | ||
pval <- 0.01 | ||
lab_idx <- log10(pval)+0.4 | ||
# Define minimal logFC | ||
lfc <- 1.25 # 100% change | ||
lfc_idx <- log2(lfc) - 0.2 | ||
# find y-axis value | ||
maxFC <- max(abs(tt$logFC)) | ||
#maxFC <- 2.5 | ||
|
||
pdf(file = paste("plots/",pre,"_hits_",contrast,"_Pvalue.pdf"), width = 12, height = 12) | ||
sel <- tt$logFC <= -log2(lfc) & tt$P.Value <= pval | tt$logFC >= log2(lfc) & tt$P.Value <= pval | ||
summary(sel) | ||
#sel2 <- tt$logFC <= -log2(lfc) & tt$P.Value <= pval & tt$P.Value >= pval | ||
#summary(sel2) | ||
#plot | ||
par(mar=c(5,4,4-3,2)+.1, cex=1.8) | ||
plot(log10(tt$P.Value),tt$logFC, xlab="-log10 P value", ylab=paste("logFC (log2 ", contrast," / DMSO)"), | ||
ylim=c(-(maxFC),maxFC), | ||
cex=0.8, | ||
pch=20, col=ifelse(sel, "red", "#22222222")) | ||
text(log10(tt[sel,"P.Value"]), tt[sel,"logFC"],adj = c(-0.25,0.55), labels=tt[sel,"ID"], col="black", cex=1.0) | ||
#text(log10(tt[sel2,"adj.P.Val"]), tt[sel2,"logFC"],adj = c(-0.25,0.55), labels=tt[sel2,"ID"], col="black", cex=0.8) | ||
abline(v=log10(pval), lty=2) | ||
abline(h=c(-1,1)*log2(lfc), lty=2) | ||
legend(pch=20, "topleft", bty="n", legend=paste("Hits: p < ", pval, "; logFC > ",lfc, "-fold"), cex=1.0, col="red") | ||
text(-3.75, 0.2, labels=paste(lfc, "-fold up-regulated "), cex = 1) | ||
text(-3.72,-0.2, labels=paste(lfc, "-fold down-regulated"), cex = 1) | ||
text(-0.6,-0.8, labels = paste("p = ",pval), cex = 1) | ||
dev.off() | ||
|
||
|
||
|
Oops, something went wrong.