Skip to content

firstbatchxyz/dria-workflows

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dria Workflows

Dria Workflows enables the creation of workflows for Dria Agents.

Installation

You can install Dria Workflows using pip:

pip install dria_workflows

Usage Example

Here's a simple example of how to use Dria Workflows:

import logging
from dria_workflows import WorkflowBuilder, Operator, Write, Edge, validate_workflow_json


def main():
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    builder = WorkflowBuilder()

    # Add a step to your workflow
    builder.generative_step(id="write_poem", prompt="Write a poem as if you are Kahlil Gibran", operator=Operator.GENERATION, outputs=[Write.new("poem")])
    
    # Define the flow of your workflow
    flow = [Edge(source="write_poem", target="_end")]
    builder.flow(flow)
    
    # Set the return value of your workflow
    builder.set_return_value("poem")
    
    # Build your workflow
    workflow = builder.build()

    # Validate your workflow
    validate_workflow_json(workflow.model_dump_json(indent=2, exclude_unset=True, exclude_none=True))

    # Save workflow
    workflow.save("poem_workflow.json")


if __name__ == "__main__":
    main()

Here is a more complex workflow

import logging
from dria_workflows import WorkflowBuilder, ConditionBuilder, Operator, Write, GetAll, Read, Push, Edge, Expression, validate_workflow_json


def main():
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    # Give a starting memory as input
    builder = WorkflowBuilder(memory={"topic_1":"Linear Algebra", "topic_2":"CUDA"})

    # Add steps to your workflow
    builder.generative_step(id="create_query", prompt="Write down a search query related to following topics: {{topic_1}} and {{topic_2}}. If any, avoid asking questions asked before: {{history}}", operator=Operator.GENERATION, inputs=[GetAll.new("history", False)], outputs=[Write.new("search_query")])
    builder.generative_step(id="search", prompt="{{search_query}}", operator=Operator.FUNCTION_CALLING, outputs=[Write.new("result"), Push.new("history")])
    builder.generative_step(id="evaluate", prompt="Evaluate if search result is related and high quality to given question by saying Yes or No. Question: {{search_query}} , Search Result: {{result}}. Only output Yes or No and nothing else.", operator=Operator.GENERATION, outputs=[Write.new("is_valid")])

    # Define the flow of your workflow
    flow = [
        Edge(source="create_query", target="search"),
        Edge(source="search", target="evaluate"),
        Edge(source="evaluate", target="_end", condition=ConditionBuilder.build(expected="Yes", target_if_not="create_query", expression=Expression.CONTAINS, input=Read.new("is_valid", True))),
    ]
    builder.flow(flow)

    # Set the return value of your workflow
    builder.set_return_value("result")

    # Build your workflow
    workflow = builder.build()
    validate_workflow_json(workflow.model_dump_json(indent=2, exclude_unset=True, exclude_none=True))

    workflow.save("search_workflow.json")


if __name__ == "__main__":
    main()

Detailed docs soon. andthattoo

About

Workflow creation for Dria Agents

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages