Skip to content

erobl/csnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cell Scoring Neural Networks

This repository contains the source code used for CSNN.

Steps to run:

  1. Download the data

  2. Extract CLL_288.zip and B-ALL_178.zip to data/raw/: You should have the following structure in your data/ folder:

📦csnn
 ┗ 📂data
   ┗📂raw
    ┣📂B-ALL
    ┣📂CLL_24
    ┣📂CLL_102
    ┗📂CLL_162
  1. Install the requirements: pip install -r requirements.txt

  2. Run preprocess_ball.py

  3. Run preprocess_cll.py

  4. Run the experiments:

Experiment Dataset Algorithm Command
Hyperparameter search B-ALL CellCNN python train_cnn_cv.py config/tuning_ball_cellcnn.yaml
DeepCellCNN python train_cnn_cv.py config/tuning_ball_cnn.yaml
CSNN-Class python train_logistic_cv.py config/tuning_ball_logistic.yaml
CSNN-Reg python train_reg_cv.py config/tuning_ball_reg.yaml
CLL CellCNN python train_cnn.py config/tuning_cll_cellcnn.yaml
DeepCellCNN python train_cnn.py config/tuning_cll_cnn.yaml
CSNN-Class python train_logistic.py config/tuning_cll_logistic.yaml
CSNN-Reg python train_reg.py config/tuning_cll_reg.yaml
Test set evaluation B-ALL CellCNN python train_cnn.py config/best_ball_cellcnn.yaml
DeepCellCNN python train_cnn.py config/best_ball_cnn.yaml
CSNN-Class python train_logistic.py config/best_ball_logistic.yaml
CSNN-Reg python train_reg.py config/best_ball_reg.yaml
CLL CellCNN python train_cnn.py config/best_cll_cellcnn.yaml
DeepCellCNN python train_cnn.py config/best_cll_cnn.yaml
CSNN-Class python train_logistic.py config/best_cll_logistic.yaml
CSNN-Reg python train_reg.py config/best_cll_reg.yaml
No initialization ablation B-ALL CSNN-Class python train_logistic_ablation_no_init.py config/best_ball_logistic.yaml
CSNN-Reg python train_reg_ablation_no_init.py config/best_ball_reg.yaml
CLL CSNN-Class python train_logistic_ablation_no_init.py config/best_cll_logistic.yaml
CSNN-Reg python train_reg_ablation_no_init.py config/best_cll_reg.yaml
Initialization only ablation B-ALL N/A python train_ablation_init_only.py config/best_ball_reg.yaml
CLL N/A python train_ablation_init_only config/best_cll_reg.yaml

System requirements

Minimum Used in this study Notes
Processor 1 x86 compatible threads 8 Intel Xeon Gold 5218 threads More threads makes the initialization run faster
Memory 16GB RAM 16GB RAM Amount of RAM dependends on dataset size
GPU 1 CUDA compatible GPU 1+ RTX 2080ti or faster GPU should have at least 11GB VRAM

Package versions used

Package Version
torch 1.9.0
numpy 1.20.1
pandas 1.1.1
tqdm 4.61.2
matplotlib 3.3.1
pyyaml 5.3.1
scikit-learn 0.24.2

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages