Build ArgumentParser from pydantic model. This project focuses to solve when an application has too many parameters e.g. Machine Learning project. You can make structured configuration using pydantic.
See ./examples/00_getting_started.py
from pydantic import BaseModel, Field
from pydantic_argify import sub_command, main
class ConfigCommand1(BaseModel):
string: str = Field(description="string parameter")
integer: int = Field(description="integer parameter")
class ConfigCommand2(BaseModel):
string: str = Field(description="string parameter")
@sub_command("command1")
def command1(config: ConfigCommand1):
print(config)
@sub_command("command2")
def command2(config: ConfigCommand2):
print(config)
if __name__ == "__main__":
main()
$ poetry run python -m examples.00_getting_started command1 -h
usage: 00_getting_started.py command1 [-h] --string STRING --integer INTEGER
options:
-h, --help show this help message and exit
ConfigCommand1:
--string STRING, -s STRING
string parameter
--integer INTEGER, -i INTEGER
integer parameter
from argparse import ArgumentParser
from pydantic import BaseModel, Field
from pydantic_argify import build_parser
class Config(BaseModel):
string: str = Field(description="string parameter")
integer: int = Field(description="integer parameter")
parser = ArgumentParser()
build_parser(parser)
parser.print_help()
usage: basic.py [-h] --string STRING --integer INTEGER
optional arguments:
-h, --help show this help message and exit
Config:
--string STRING, -s STRING
a required string
--integer INTEGER, -i INTEGER
a required integer
This project is dedicated to crafting an argument parser based on the Pydantic model.
Unlike many other projects where the ArgumentParser functionality is concealed within the library,
this tool aims to simplify its use, even in complex scenarios.
For instance, handling nested sub-parsers like aws s3 cp <some options>
or supporting nested Pydantic models has been a challenge in existing solutions.
This library overcomes these limitations, allowing you to effortlessly incorporate intricate functionalities.
from argparse import ArgumentParser
from pydantic import BaseModel, Field
from pydantic_argify import build_parser
class SubConfigA(BaseModel):
string: str = Field(description="string parameter")
integer: int = Field(description="integer parameter")
class SubConfigB(BaseModel):
double: float = Field(description="a required string")
integer: int = Field(0, description="a required integer")
parser = ArgumentParser()
subparsers = parser.add_subparsers()
build_parser(subparsers.add_parser("alpha"), SubConfigA)
build_parser(subparsers.add_parser("beta"), SubConfigB)
parser.print_help()
usage: sub_parser.py [-h] {alpha,beta} ...
positional arguments:
{alpha,beta}
optional arguments:
-h, --help show this help message and exit
See: ./examples/06_nested_field
$ python -m examples.06_nested_field -h
usage: 06_nested_field.py [-h] --name NAME --child.name CHILD.NAME [--child.age CHILD.AGE] --child.is-active CHILD.IS_ACTIVE
options:
-h, --help show this help message and exit
Config:
--name NAME, -n NAME
ChildConfig:
--child.name CHILD.NAME, -c CHILD.NAME
--child.age CHILD.AGE
--child.is-active CHILD.IS_ACTIVE
Behaviour of pydantic can be controlled via the Config
class or extra arguments of Field
.
Config
is affected all fields.
Extra arguments of Field
is affected specific field.
cli_disable_prefix
- Prefix of argument of boolean type for `store_false`. Default to
--disable-
cli_enable_prefix
- Prefix of argument of boolean type for `store_true`. Default to
--enable-
- [ ]: Options completion for bash