Skip to content

Commit

Permalink
fix snapshots
Browse files Browse the repository at this point in the history
  • Loading branch information
strengejacke committed Sep 3, 2024
1 parent fea57f0 commit 5da8ba8
Show file tree
Hide file tree
Showing 2 changed files with 59 additions and 72 deletions.
52 changes: 23 additions & 29 deletions tests/testthat/_snaps/weightit.md
Original file line number Diff line number Diff line change
@@ -1,57 +1,51 @@
# weightit, multinom

Code
print(model_parameters(fit4))
print(model_parameters(fit4, exponentiate = TRUE), zap_small = TRUE)
Output
# Response level: 2
Parameter | Log-Odds | SE | 95% CI | z | p
-----------------------------------------------------------------
(Intercept) | 1.68e-03 | 0.62 | [-1.22, 1.22] | 2.71e-03 | 0.998
treat | 0.07 | 0.24 | [-0.39, 0.54] | 0.31 | 0.755
age | -0.03 | 0.01 | [-0.05, -0.01] | -2.38 | 0.018
educ | -0.02 | 0.05 | [-0.11, 0.08] | -0.33 | 0.738
Parameter | Odds Ratio | SE | 95% CI | z | p
--------------------------------------------------------------
(Intercept) | 1.00 | 0.62 | [0.30, 3.39] | 0.00 | 0.998
treat | 1.08 | 0.25 | [0.68, 1.71] | 0.31 | 0.755
age | 0.97 | 0.01 | [0.95, 0.99] | -2.38 | 0.018
educ | 0.98 | 0.05 | [0.89, 1.08] | -0.33 | 0.738
# Response level: 3
Parameter | Log-Odds | SE | 95% CI | z | p
----------------------------------------------------------------
(Intercept) | -3.01 | 0.71 | [-4.40, -1.61] | -4.23 | < .001
treat | 0.16 | 0.25 | [-0.32, 0.64] | 0.67 | 0.502
age | -1.70e-04 | 0.01 | [-0.02, 0.02] | -0.01 | 0.989
educ | 0.18 | 0.05 | [ 0.08, 0.29] | 3.51 | < .001
Parameter | Odds Ratio | SE | 95% CI | z | p
---------------------------------------------------------------
(Intercept) | 0.05 | 0.04 | [0.01, 0.20] | -4.23 | < .001
treat | 1.18 | 0.29 | [0.73, 1.91] | 0.67 | 0.502
age | 1.00 | 0.01 | [0.98, 1.02] | -0.01 | 0.989
educ | 1.20 | 0.06 | [1.08, 1.33] | 3.51 | < .001
Message
Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald z-distribution approximation.
The model has a log- or logit-link. Consider using `exponentiate =
TRUE` to interpret coefficients as ratios.

# weightit, ordinal

Code
print(model_parameters(fit5))
print(model_parameters(fit5, exponentiate = TRUE), zap_small = TRUE)
Output
# Fixed Effects
Parameter | Log-Odds | SE | 95% CI | z | p
----------------------------------------------------------------
treat | 0.11 | 0.19 | [-0.25, 0.48] | 0.60 | 0.549
age | -7.77e-03 | 9.97e-03 | [-0.03, 0.01] | -0.78 | 0.436
educ | 0.11 | 0.04 | [ 0.03, 0.18] | 2.70 | 0.007
Parameter | Odds Ratio | SE | 95% CI | z | p
------------------------------------------------------------
treat | 1.12 | 0.21 | [0.78, 1.61] | 0.60 | 0.549
age | 0.99 | 0.01 | [0.97, 1.01] | -0.78 | 0.436
educ | 1.11 | 0.04 | [1.03, 1.20] | 2.70 | 0.007
# Intercept
Parameter | Log-Odds | SE | 95% CI | z | p
----------------------------------------------------------
1|2 | 1.19 | 0.52 | [0.17, 2.20] | 2.30 | 0.022
2|3 | 2.29 | 0.51 | [1.28, 3.29] | 4.47 | < .001
Parameter | Odds Ratio | SE | 95% CI | z | p
-------------------------------------------------------------
1|2 | 3.28 | 1.70 | [1.19, 9.04] | 2.30 | 0.022
2|3 | 9.84 | 5.03 | [3.61, 26.81] | 4.47 | < .001
Message
Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald z-distribution approximation.
The model has a log- or logit-link. Consider using `exponentiate =
TRUE` to interpret coefficients as ratios.

79 changes: 36 additions & 43 deletions tests/testthat/test-weightit.R
Original file line number Diff line number Diff line change
@@ -1,50 +1,43 @@
skip_if_not_installed("WeightIt")
skip_if_not_installed("cobalt")
skip_if_not_installed("insight", minimum_version = "0.20.4")
skip_if_not_installed("withr")

withr::local_options(
list(parameters_warning_exponentiate = TRUE),
test_that("weightit, multinom", {
data("lalonde", package = "cobalt")
set.seed(1234)
# Logistic regression ATT weights
w.out <- WeightIt::weightit(
treat ~ age + educ + married + re74,
data = lalonde,
method = "glm",
estimand = "ATT"
)
lalonde$re78_3 <- factor(findInterval(lalonde$re78, c(0, 5e3, 1e4)))
test_that("weightit, multinom", {
data("lalonde", package = "cobalt")
set.seed(1234)
# Logistic regression ATT weights
w.out <- WeightIt::weightit(
treat ~ age + educ + married + re74,
data = lalonde,
method = "glm",
estimand = "ATT"
)
lalonde$re78_3 <- factor(findInterval(lalonde$re78, c(0, 5e3, 1e4)))

fit4 <- WeightIt::multinom_weightit(
re78_3 ~ treat + age + educ,
data = lalonde,
weightit = w.out
)
expect_snapshot(print(model_parameters(fit4)))
})
)
fit4 <- WeightIt::multinom_weightit(
re78_3 ~ treat + age + educ,
data = lalonde,
weightit = w.out
)
expect_snapshot(print(model_parameters(fit4, exponentiate = TRUE), zap_small = TRUE))
})

withr::local_options(
list(parameters_warning_exponentiate = TRUE),
test_that("weightit, ordinal", {
data("lalonde", package = "cobalt")
set.seed(1234)
# Logistic regression ATT weights
w.out <- WeightIt::weightit(
treat ~ age + educ + married + re74,
data = lalonde,
method = "glm",
estimand = "ATT"
)
lalonde$re78_3 <- factor(findInterval(lalonde$re78, c(0, 5e3, 1e4)))
test_that("weightit, ordinal", {
data("lalonde", package = "cobalt")
set.seed(1234)
# Logistic regression ATT weights
w.out <- WeightIt::weightit(
treat ~ age + educ + married + re74,
data = lalonde,
method = "glm",
estimand = "ATT"
)
lalonde$re78_3 <- factor(findInterval(lalonde$re78, c(0, 5e3, 1e4)))

fit5 <- WeightIt::ordinal_weightit(
ordered(re78_3) ~ treat + age + educ,
data = lalonde,
weightit = w.out
)
expect_snapshot(print(model_parameters(fit5)))
})
)
fit5 <- WeightIt::ordinal_weightit(
ordered(re78_3) ~ treat + age + educ,
data = lalonde,
weightit = w.out
)
expect_snapshot(print(model_parameters(fit5, exponentiate = TRUE), zap_small = TRUE))
})

0 comments on commit 5da8ba8

Please sign in to comment.