Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update calc open short & target long #956

Merged
merged 6 commits into from
Apr 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 2 additions & 5 deletions crates/hyperdrive-math/src/long/open.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,7 @@ impl State {
let base_amount = base_amount.into();

if base_amount < self.config.minimum_transaction_amount.into() {
// TODO would be nice to return a `Result` here instead of a panic.
panic!("MinimumTransactionAmount: Input amount too low");
return Err(eyre!("MinimumTransactionAmount: Input amount too low",));
}

let long_amount =
Expand Down Expand Up @@ -217,9 +216,7 @@ mod tests {
async fn test_error_open_long_min_txn_amount() -> Result<()> {
let mut rng = thread_rng();
let state = rng.gen::<State>();
let result = std::panic::catch_unwind(|| {
state.calculate_open_long(state.config.minimum_transaction_amount - 10)
});
let result = state.calculate_open_long(state.config.minimum_transaction_amount - 10);
assert!(result.is_err());
Ok(())
}
Expand Down
231 changes: 135 additions & 96 deletions crates/hyperdrive-math/src/long/targeted.rs
Original file line number Diff line number Diff line change
Expand Up @@ -51,116 +51,142 @@ impl State {
None => fixed!(1e14),
};

// Check input args.
let current_rate = self.calculate_spot_rate();
if target_rate > current_rate {
return Err(eyre!(
"target_rate = {} argument must be less than the current_rate = {} for a targeted long.",
target_rate, current_rate,
));
}
dpaiton marked this conversation as resolved.
Show resolved Hide resolved

// Estimate the long that achieves a target rate.
let (target_share_reserves, target_bond_reserves) =
self.reserves_given_rate_ignoring_exposure(target_rate);
let (target_base_delta, target_bond_delta) =
let (mut target_base_delta, target_bond_delta) =
self.trade_deltas_from_reserves(target_share_reserves, target_bond_reserves);

// Determine what rate was achieved.
let resulting_rate = self.rate_after_long(target_base_delta, Some(target_bond_delta))?;

// The estimated long should always underestimate because the realized price
// The estimated long will usually underestimate because the realized price
// should always be greater than the spot price.
//
// However, if we overshot the zero-crossing (due to errors arising from FixedPoint arithmetic),
// then either return or reduce the starting base amount and start on Newton's method.
if target_rate > resulting_rate {
return Err(eyre!("get_targeted_long: We overshot the zero-crossing.",));
}
let rate_error = resulting_rate - target_rate;
let rate_error = target_rate - resulting_rate;

// If solvent & within the allowable error, stop here.
if self
.solvency_after_long(target_base_delta, target_bond_delta, checkpoint_exposure)
.is_some()
&& rate_error < allowable_error
{
Ok(target_base_delta)
// If we were still close enough and solvent, return.
if self
.solvency_after_long(target_base_delta, target_bond_delta, checkpoint_exposure)
.is_some()
&& rate_error < allowable_error
{
return Ok(target_base_delta);
}
// Else, cut the initial guess down by an order of magnitude and go to Newton's method.
else {
target_base_delta = target_base_delta / fixed!(10e18);
}
}
// Else, iterate to find a solution.
// Else check if we are close enough to return.
else {
// We can use the initial guess as a starting point since we know it is less than the target.
let mut possible_target_base_delta = target_base_delta;

// Iteratively find a solution
for _ in 0..maybe_max_iterations.unwrap_or(7) {
let possible_target_bond_delta = self
.calculate_open_long(possible_target_base_delta)
.unwrap();
let resulting_rate = self.rate_after_long(
possible_target_base_delta,
Some(possible_target_bond_delta),
)?;

// We assume that the loss is positive only because Newton's
// method and the one-shot approximation will always underestimate.
if target_rate > resulting_rate {
return Err(eyre!("get_targeted_long: We overshot the zero-crossing.",));
}
// The loss is $l(x) = r(x) - r_t$ for some rate after a long
// is opened, $r(x)$, and target rate, $r_t$.
let loss = resulting_rate - target_rate;

// If we've done it (solvent & within error), then return the value.
if self
.solvency_after_long(
possible_target_base_delta,
possible_target_bond_delta,
checkpoint_exposure,
)
.is_some()
&& loss < allowable_error
{
return Ok(possible_target_base_delta);
}
// Otherwise perform another iteration.
else {
// The derivative of the loss is $l'(x) = r'(x)$.
// We return $-l'(x)$ because $r'(x)$ is negative, which
// can't be represented with FixedPoint.
let negative_loss_derivative = self.rate_after_long_derivative_negation(
possible_target_base_delta,
possible_target_bond_delta,
)?;

// Adding the negative loss derivative instead of subtracting the loss derivative
// ∆x_{n+1} = ∆x_{n} - l / l'
// = ∆x_{n} + l / (-l')
possible_target_base_delta =
possible_target_base_delta + loss / negative_loss_derivative;
}
}

// Final solvency check.
// If solvent & within the allowable error, stop here.
let rate_error = resulting_rate - target_rate;
if self
.solvency_after_long(
possible_target_base_delta,
self.calculate_open_long(possible_target_base_delta)
.unwrap(),
checkpoint_exposure,
)
.is_none()
.solvency_after_long(target_base_delta, target_bond_delta, checkpoint_exposure)
.is_some()
&& rate_error < allowable_error
{
return Err(eyre!("Guess in `get_targeted_long` is insolvent."));
return Ok(target_base_delta);
}
}

// Final accuracy check.
// Iterate to find a solution.
// We can use the initial guess as a starting point since we know it is less than the target.
let mut possible_target_base_delta = target_base_delta;

// Iteratively find a solution
for _ in 0..maybe_max_iterations.unwrap_or(7) {
let possible_target_bond_delta = self
.calculate_open_long(possible_target_base_delta)
.unwrap();
let resulting_rate =
self.rate_after_long(possible_target_base_delta, Some(possible_target_bond_delta))?;

// We assume that the loss is positive only because Newton's
// method will always underestimate.
if target_rate > resulting_rate {
return Err(eyre!("get_targeted_long: We overshot the zero-crossing.",));
}
let loss = resulting_rate - target_rate;
if loss >= allowable_error {
return Err(eyre!(
"get_targeted_long: Unable to find an acceptable loss with max iterations. Final loss = {}.",
loss
"We overshot the zero-crossing during Newton's method.",
));
}
let loss = resulting_rate - target_rate;

// If we've done it (solvent & within error), then return the value.
if self
.solvency_after_long(
possible_target_base_delta,
possible_target_bond_delta,
checkpoint_exposure,
)
.is_some()
&& loss < allowable_error
{
return Ok(possible_target_base_delta);
}
// Otherwise perform another iteration.
else {
// The derivative of the loss is $l'(x) = r'(x)$.
// We return $-l'(x)$ because $r'(x)$ is negative, which
// can't be represented with FixedPoint.
let negative_loss_derivative = self.rate_after_long_derivative_negation(
possible_target_base_delta,
possible_target_bond_delta,
)?;

// Adding the negative loss derivative instead of subtracting the loss derivative
// ∆x_{n+1} = ∆x_{n} - l / l'
// = ∆x_{n} + l / (-l')
possible_target_base_delta =
possible_target_base_delta + loss / negative_loss_derivative;
}
}

Ok(possible_target_base_delta)
// Final solvency check.
if self
.solvency_after_long(
possible_target_base_delta,
self.calculate_open_long(possible_target_base_delta)
.unwrap(),
checkpoint_exposure,
)
.is_none()
{
return Err(eyre!("Guess in `calculate_targeted_long` is insolvent."));
}

// Final accuracy check.
let possible_target_bond_delta = self
.calculate_open_long(possible_target_base_delta)
.unwrap();
let resulting_rate =
self.rate_after_long(possible_target_base_delta, Some(possible_target_bond_delta))?;
if target_rate > resulting_rate {
return Err(eyre!(
"We overshot the zero-crossing after Newton's method.",
));
}
let loss = resulting_rate - target_rate;
if loss >= allowable_error {
return Err(eyre!(
"Unable to find an acceptable loss with max iterations. Final loss = {}.",
loss
));
}

Ok(possible_target_base_delta)
}

/// The fixed rate after a long has been opened.
Expand All @@ -178,9 +204,10 @@ impl State {
fn rate_after_long(
&self,
base_amount: FixedPoint,
bond_amount: Option<FixedPoint>,
maybe_bond_amount: Option<FixedPoint>,
) -> Result<FixedPoint> {
let resulting_price = self.calculate_spot_price_after_long(base_amount, bond_amount)?;
let resulting_price =
self.calculate_spot_price_after_long(base_amount, maybe_bond_amount)?;
Ok((fixed!(1e18) - resulting_price)
/ (resulting_price * self.annualized_position_duration()))
}
Expand Down Expand Up @@ -464,9 +491,11 @@ mod tests {
)
.await?;

// Bob opens a targeted long.
let max_spot_price_before_long = bob.get_state().await?.calculate_max_spot_price();
let target_rate = initial_fixed_rate / fixed!(2e18);
// Get a targeted long amount.
// TODO: explore tighter bounds on this.
let target_rate = bob.get_state().await?.calculate_spot_rate()
/ rng.gen_range(fixed!(1.0001e18)..=fixed!(10e18));
// let target_rate = initial_fixed_rate / fixed!(2e18);
let targeted_long_result = bob
.calculate_targeted_long(
target_rate,
Expand All @@ -475,28 +504,38 @@ mod tests {
)
.await;

// Bob opens a targeted long.
let current_state = bob.get_state().await?;
let max_spot_price_before_long = current_state.calculate_max_spot_price();
match targeted_long_result {
// If the code ran without error, open the long
Ok(targeted_long) => {
bob.open_long(targeted_long, None, None).await?;
}

// Else check the error for an acceptible one
// Else parse the error for a to improve error messaging.
Err(e) => {
// If the fn failed it's possible that the target rate would be insolvent.
if e.to_string()
.contains("Unable to find an acceptable loss with max iterations")
{
let state = bob.get_state().await?;
let max_long = bob.calculate_max_long(None).await?;
let rate_after_max_long =
state.calculate_spot_rate_after_long(max_long, None)?;
current_state.calculate_spot_rate_after_long(max_long, None)?;
// If the rate after the max long is at or below the target, then we could have hit it.
if rate_after_max_long <= target_rate {
// Fail if there was a long to hit the rate (which means the max is <= the target)
return Err(eyre!("Calculate max long failed; a long that hits the target rate exists but was not found."));
return Err(eyre!(
"ERROR {}\nA long that hits the target rate exists but was not found.",
e
));
}
// Otherwise the target would have resulted in insolvency and wasn't possible.
else {
return Err(eyre!(
"ERROR {}\nThe target rate would result in insolvency.",
e
));
}
}
// If the error is not the one we're looking for, return it, causing the test to fail.
else {
Expand All @@ -513,18 +552,18 @@ mod tests {
// 3. IF Bob's budget is not consumed; then new rate is close to the target rate

// Check that our resulting price is under the max
let spot_price_after_long = bob.get_state().await?.calculate_spot_price();
let current_state = bob.get_state().await?;
let spot_price_after_long = current_state.calculate_spot_price();
assert!(
max_spot_price_before_long > spot_price_after_long,
"Resulting price is greater than the max."
);

// Check solvency
let is_solvent =
{ bob.get_state().await?.calculate_solvency() > allowable_solvency_error };
let is_solvent = { current_state.calculate_solvency() > allowable_solvency_error };
assert!(is_solvent, "Resulting pool state is not solvent.");

let new_rate = bob.get_state().await?.calculate_spot_rate();
let new_rate = current_state.calculate_spot_rate();
// If the budget was NOT consumed, then we assume the target was hit.
if !(bob.base() <= allowable_budget_error) {
// Actual price might result in long overshooting the target.
Expand Down
Loading
Loading