Skip to content

cpoerschke/ltr-with-bees

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning-to-Rank with Apache Solr and Bees

This repo contains the example material of my talk at Lucene/Solr Revolution 2017.

(Now updated to use the Solr 7.0.0 release. The original example material remains available on the branch_6_6_1 branch.)

Setup

This demo material for Solr's Learning-to-Rank plugin uses

Cloning this repo

git clone https://github.com/cpoerschke/ltr-with-bees
cd ltr-with-bees

Downloading Apache Solr

# Download solr-7.0.0.tgz from http://lucene.apache.org/solr/mirrors-solr-latest-redir.html
gunzip solr-7.0.0.tgz
tar xf solr-7.0.0.tar

Downloading LIBLINEAR

# Download liblinear-2.11.tar from https://www.csie.ntu.edu.tw/~cjlin/liblinear/
tar xf liblinear-2.11.tar
cd liblinear-2.11
make
cd ..

Downloading RankLib

# Download RankLib-2.8.jar from https://sourceforge.net/projects/lemur/files/lemur/RankLib-2.8/

Register your Twitter App

Some of the scripts in this demo repo make requests to selected Twitter REST APIs. These requests are authenticated using Application-only authentication and therefore the application i.e. this demo needs to be registered on the Twitter Application Management page at https://apps.twitter.com.

As part of the registration the application is issued with a so-called Consumer Key and Secret. The consumer key and secret that I registered are specific to my use of this demo repo i.e. I cannot share them with you. If you wish to fully use this demo repo yourself then you simply need to register your own clone or fork of the demo repo via the Twitter Application Management page at https://apps.twitter.com and set two shell environment variables as outlined below.

Using the demo script

The ltr-with-bees-demo.sh script illustrates one way to use the materials in this repo.

ltr-with-bees-demo.sh
================================================================================
DEMO: Obtaining Twitter Access Token for API_TWITTER_CONSUMER_KEY/API_TWITTER_CONSUMER_SECRET environment variables
================================================================================
ERROR: Please set and export API_TWITTER_CONSUMER_KEY and API_TWITTER_CONSUMER_SECRET environment variables.
export API_TWITTER_CONSUMER_KEY="NotMyRealKey"
export API_TWITTER_CONSUMER_SECRET="NotMyRealSecret"
ltr-with-bees-demo.sh
================================================================================
DEMO: Obtaining Twitter Access Token for API_TWITTER_CONSUMER_KEY/API_TWITTER_CONSUMER_SECRET environment variables
================================================================================
{"token_type":"bearer","access_token":"NotARealAccessToken"}
To cache the token in an environment variable:
export API_TWITTER_ACCESS_TOKEN="NotARealAccessToken"
export API_TWITTER_ACCESS_TOKEN="NotARealAccessToken"
ltr-with-bees-demo.sh
================================================================================
DEMO: Using Twitter Access Token from API_TWITTER_ACCESS_TOKEN environment variable
================================================================================

...

================================================================================
DEMO: Starting solr
================================================================================

...

================================================================================
DEMO: Creating tweets using configs/tweets_config config
================================================================================

...

================================================================================
DEMO: Indexing demo tweets into Solr
================================================================================

...

================================================================================
DEMO: Gathering external file field values
================================================================================

...

================================================================================
DEMO: Uploading candidate feature ...
================================================================================

...

================================================================================
DEMO: Running sample feature extraction
================================================================================

...

================================================================================
DEMO: User ... is searching for ...
================================================================================

...

================================================================================
DEMO: Logging click for ...
================================================================================

...

================================================================================
DEMO: Training model ...
================================================================================

...

================================================================================
DEMO: Uploading model ...
================================================================================

...

================================================================================
DEMO: model=... search
================================================================================

...

The python scripts in this repo

Wrapper scripts

Script What does it do?
oauth2.py Wraps https://dev.twitter.com/oauth/reference/post/oauth2/token and https://dev.twitter.com/oauth/reference/post/oauth2/invalidate/token API use.
statuses.py Wraps https://dev.twitter.com/rest/reference/get/statuses/lookup API use.
users.py Wraps https://dev.twitter.com/rest/reference/get/users/lookup API use.
search.py Wraps https://dev.twitter.com/rest/reference/get/search/tweets API use.
solr.py Simple update/select/delete operations on the demo solr collections.
linear.py Takes inputs, calls LIBLINEAR's train in a simple way, converts output into a solr-ltr .json model file.
rank.py Takes inputs, does RankLib training in a simple way, converts output into a solr-ltr .json model file.

You can run these scripts individually to explore what they do, e.g.

solr.py --help
usage: solr.py [-h]
               {select-all,select,select-facet-counts,update,delete-by-query}
               ...

positional arguments:
  {select-all,select,select-facet-counts,update,delete-by-query}

optional arguments:
  -h, --help            show this help message and exit

Top-level script

ltr-with-bees.py is the top-level python script in this repo and its implementation uses functions from the wrapper scripts. For example ltr-with-bees.py index-tweets-by-id uses statuses.py's call_lookup_api function to lookup tweets and solr.py's do_solr_update function to add the tweets to the solr collection.

ltr-with-bees.py --help
usage: ltr-with-bees.py [-h]
                        [--token-cache-env-variable TOKEN_CACHE_ENV_VARIABLE]
                        {twitter-api-login,twitter-api-logout,index-tweets-by-id,index-tweets-by-query,refresh-user-data,solr-search-and-log-features,solr-log-click,train-linear-model,train-trees-model}
                        ...

positional arguments:
  {twitter-api-login,twitter-api-logout,index-tweets-by-id,index-tweets-by-query,refresh-user-data,solr-search-and-log-features,solr-log-click,train-linear-model,train-trees-model}

optional arguments:
  -h, --help            show this help message and exit
  --token-cache-env-variable TOKEN_CACHE_ENV_VARIABLE

Adapting the demo

Indexing other tweets

You can use ltr-with-bees.py index-tweets-by-query to index additional or alternative tweets, e.g.

ltr-with-bees.py index-tweets-by-query "#Lucene OR #Solr"

You can also define and upload further features and train new models using the existing and/or new features e.g.

ltr-with-bees.py train-linear-model --feature-names "myFirstFeature,mySecondFeature" --model-name myFirstModel

or

ltr-with-bees.py train-trees-model --ranklib-tree=10 --ranklib-leaf=5 --model-name mySecondModel

In-browser results display

The demo config in this repo includes an example configuration for an XSLT Response Writer and by adding wt=xslt and tr=example.xsl parameters to your requests you can then view results not just as JSON and text but in a web-browser with embedded tweets via the example.xsl e.g.

http://localhost:8983/solr/tweets/select?q=*:*&wt=xslt&tr=example.xsl&fl=id,tweet_url:source,embedded_tweet:source

or the shorter equivalent

http://localhost:8983/solr/tweets/select_tr?q=*:*

or the shorter equivalent with re-ranking

http://localhost:8983/solr/tweets/select_tr?q=*:*&rq={!ltr model=treesModel efi.from_desktop=1}

Demo config limitations and shortcuts

  • solr-7.0.0 release: The example configs shipped with Solr 7.0.0 are fully fledged and you can fully use the Solr Admin UI to explore and work with them. The downside of fully fledged is that most solrconfig.xml and managed-schema examples are 1000+ lines long.

  • ltr-with-bees repo:

  • The demo configs in this repo contain solrconfig.xml and managed-schema files which are minimally short, only a few dozen lines long. The upside of this conciseness is that you can easily see the things configured for the demo. The downside of this brevity is that certain parts of the Solr Admin UI cannot be used with the demo configs.

  • Solr is not a database. To keep things simple in this demo we persisted features and clicks in two Solr collections, for real in production you probably would store features and clicks data outside of Solr.

Solr Resources and Community

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published