Skip to content

A small library to locally calculate the scores on numer.ai tournament's diagnostics dashboard.

License

Notifications You must be signed in to change notification settings

councilofelders/numereval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A small library to reproduce the scores on numer.ai diagnistics dashboard.

Downloads

Installation

pip install numereval

Not an official Numerai tool

Structure

Structure

Numerai main tournament evaluation metrics

numereval.numereval.evaluate

A generic function to calculate basic per-era correlation stats with optional feature exposure and plotting.

Useful for evaluating custom validation split from training data without MMC metrics and correlation with example predictions.

from numereval.numereval import evaluate

evaluate(training_data, plot=True, feature_exposure=False)
Correlations plot Returned metrics
Training Correlations Metrics

numereval.numereval.diagnostics

To reproduce the scores on diagnostics dashboard locally with optional plotting of per-era correlations.

from numereval.numereval import diagnostics

validation_data = tournament_data[tournament_data.data_type == "validation"]

diagnostics(
    validation_data,
    plot=True,
    example_preds_loc="numerai_dataset_244\example_predictions.csv",
)
Validation plot Returned metrics
all eras validation plot all eras validation metrics

Specific validation eras

specify a list of eras in the format eras = ["era121", "era122", "era209"]

validation_data = tournament_data[tournament_data.data_type == "validation"]

eras = validation_data.era.unique()[11:-2]

numereval.numereval.diagnostics(
    validation_data,
    plot=True,
    example_preds_loc="numerai_dataset_244\example_predictions.csv",
    eras=eras,
)
Validation plot Returned metrics
all eras validation plot all eras validation metrics

Numerai Signals evaluation metrics

Note: Since predictions are neutralized against Numerai's internal features before scoring, results from numereval.signalseval.run_analytics() do not represent exact diagnostics and live scores.

import numereval
from numereval.signalseval import run_analytics, score_signals

#after assigning predictions
train_era_scores = train_data.groupby(train_data.index).apply(score_signals)
test_era_scores = test_data.groupby(test_data.index).apply(score_signals)

train_scores = run_analytics(train_era_scores, plot=False)
test_scores = run_analytics(test_era_scores, plot=True)

Test correlation plot

Test cumulative correlation plot

train_scores test_scores
train_Scores test_Scores

Thanks to Jason Rosenfeld for allowing the run_analytics() to be integrated into the library.

Docs will be updated soon!