Skip to content

conggalam12/Face_Recognition

Repository files navigation

Face_Recognition

Fine tune Facenet-pytorch with custom dataset
You can see the original in here facenet-pytorch
I recognition 31 persons , you can see in here

Link dataset

Data

Clone the repository

git clone https://github.com/conggalam12/Face_Recognition.git

Install requirement

cd Face_Recognition
pip install -r requirements.txt

Download and setup weights

mdkir weights
cd weights
wget https://github.com/conggalam12/Face_Recognition/releases/tag/weights/resnet_face.pth

Train with custom dataset

Setup your dataset

|-img
  |-- Name person 1
      |--- image_person_1_1.jpg
      |--- image_person_1_2.jpg
  |-- Name person 2
      |--- image_person_2_1.jpg
      |--- image_person_2_2.jpg

Setup folder train

You set path_folder in train.py

data_dir = 'folder_data_img'

And you run train MTCNN , take the face each images like that
img1 img2

Continue train facenet

Using with single face but not show box

python demo.py --path_img [path_your_image] --path_model [path_your_model]

Using with single face

python demo_single.py --path_img [path_your_image] --path_model [path_your_model]

Result single face

img1 img2
img3 img4

Use with multiple faces

python demo_multi.py --path_img [path_your_image] --path_model [path_your_model]

Result multiple face

img1 img2

References

  1. David Sandberg's facenet repo: https://github.com/davidsandberg/facenet

  2. F. Schroff, D. Kalenichenko, J. Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering, arXiv:1503.03832, 2015. PDF

  3. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, A. Zisserman. VGGFace2: A dataset for recognising face across pose and age, International Conference on Automatic Face and Gesture Recognition, 2018. PDF

  4. D. Yi, Z. Lei, S. Liao and S. Z. Li. CASIAWebface: Learning Face Representation from Scratch, arXiv:1411.7923, 2014. PDF

  5. K. Zhang, Z. Zhang, Z. Li and Y. Qiao. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks, IEEE Signal Processing Letters, 2016. PDF

About

Fine tune Facenet-pytorch with custom dataset

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages