Skip to content

Commit

Permalink
Predibase documentation (#266)
Browse files Browse the repository at this point in the history
* Predibase documentation

* Added Predibase integration to Github repo Readme

* Updated Predibase integration
  • Loading branch information
jverre authored Sep 17, 2024
1 parent 4553b5c commit 929a199
Show file tree
Hide file tree
Showing 8 changed files with 500 additions and 7 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@ The easiest way to get started is to use one of our integrations. Opik supports:
| OpenAI | Log traces for all OpenAI LLM calls | [Documentation](https://www.comet.com//docs/opik/tracing/integrations/openai/?utm_source=opik&utm_medium=github&utm_content=openai_link) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/openai.ipynb) |
| LangChain | Log traces for all LangChain LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/langchain/?utm_source=opik&utm_medium=github&utm_content=langchain_link) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/langchain.ipynb) |
| LlamaIndex | Log traces for all LlamaIndex LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/llama_index?utm_source=opik&utm_medium=github&utm_content=llama_index_link) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/llama-index.ipynb) |
| Predibase | Fine-tune and serve open-source Large Language Models | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/predibase?utm_source=opik&utm_medium=github&utm_content=predibase_link) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/predibase.ipynb) |

> [!TIP]
> If the framework you are using is not listed above, feel free to [open an issue](https://github.com/comet-ml/opik/issues) or submit a PR with the integration.
Expand Down
254 changes: 254 additions & 0 deletions apps/opik-documentation/documentation/docs/cookbook/predibase.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Opik with Predibase\n",
"\n",
"This notebook demonstrates how to use Predibase as an LLM provider with LangChain, and how to integrate Comet for tracking and logging.\n",
"\n",
"## Setup\n",
"\n",
"First, let's install the necessary packages and set up our environment variables."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet predibase opik"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now configure Opik and Predibase:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Configure Opik\n",
"import opik\n",
"import os\n",
"\n",
"opik.configure(use_local=False)\n",
"\n",
"# Configure predibase\n",
"import getpass\n",
"os.environ[\"PREDIBASE_API_TOKEN\"] = getpass.getpass(\"Enter your Predibase API token\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating the Opik Tracer\n",
"\n",
"In order to log traces to Opik, we will be using the OpikTracer from the LangChain integration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import Comet tracer\n",
"from opik.integrations.langchain import OpikTracer\n",
"\n",
"# Initialize Comet tracer\n",
"opik_tracer = OpikTracer(\n",
" tags=[\"predibase\", \"langchain\"],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initial Call\n",
"\n",
"Let's set up our Predibase model and make an initial call."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import Predibase\n",
"import os\n",
"\n",
"model = Predibase(\n",
" model=\"mistral-7b\",\n",
" predibase_api_key=os.environ.get(\"PREDIBASE_API_TOKEN\"),\n",
")\n",
"\n",
"# Test the model with Comet tracing\n",
"response = model.invoke(\n",
" \"Can you recommend me a nice dry wine?\",\n",
" config={\n",
" \"temperature\": 0.5,\n",
" \"max_new_tokens\": 1024,\n",
" \"callbacks\": [opik_tracer]\n",
" }\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In addition to passing the OpikTracer to the invoke method, you can also define it during the creation of the `Predibase` object:\n",
"\n",
"```python\n",
"model = Predibase(\n",
" model=\"mistral-7b\",\n",
" predibase_api_key=os.environ.get(\"PREDIBASE_API_TOKEN\"),\n",
").with_config({\"callbacks\": [opik_tracer]})\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SequentialChain\n",
"\n",
"Now, let's create a more complex chain and run it with Comet tracing."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain, SimpleSequentialChain\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"# Synopsis chain\n",
"template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
"\n",
"Title: {title}\n",
"Playwright: This is a synopsis for the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
"synopsis_chain = LLMChain(llm=model, prompt=prompt_template)\n",
"\n",
"# Review chain\n",
"template = \"\"\"You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play.\n",
"\n",
"Play Synopsis:\n",
"{synopsis}\n",
"Review from a New York Times play critic of the above play:\"\"\"\n",
"prompt_template = PromptTemplate(input_variables=[\"synopsis\"], template=template)\n",
"review_chain = LLMChain(llm=model, prompt=prompt_template)\n",
"\n",
"# Overall chain\n",
"overall_chain = SimpleSequentialChain(\n",
" chains=[synopsis_chain, review_chain], verbose=True\n",
")\n",
"\n",
"# Run the chain with Comet tracing\n",
"review = overall_chain.run(\"Tragedy at sunset on the beach\", callbacks=[opik_tracer])\n",
"print(review)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Accessing Logged Traces\n",
"\n",
"We can access the trace IDs collected by the Comet tracer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"traces = opik_tracer.created_traces()\n",
"print(\"Collected trace IDs:\", [trace.id for trace in traces])\n",
"\n",
"# Flush traces to ensure all data is logged\n",
"opik_tracer.flush()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fine-tuned LLM Example\n",
"\n",
"Finally, let's use a fine-tuned model with Comet tracing.\n",
"\n",
"**Note:** In order to use a fine-tuned model, you will need to have access to the model and the correct model ID. The code below will return a `NotFoundError` unless the `model` and `adapter_id` are updated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fine_tuned_model = Predibase(\n",
" model=\"my-base-LLM\",\n",
" predibase_api_key=os.environ.get(\"PREDIBASE_API_TOKEN\"),\n",
" predibase_sdk_version=None,\n",
" adapter_id=\"my-finetuned-adapter-id\",\n",
" adapter_version=1,\n",
" **{\n",
" \"api_token\": os.environ.get(\"HUGGING_FACE_HUB_TOKEN\"),\n",
" \"max_new_tokens\": 5,\n",
" },\n",
")\n",
"\n",
"# Configure the Comet tracer\n",
"fine_tuned_model = fine_tuned_model.with_config({\"callbacks\": [opik_tracer]})\n",
"\n",
"# Invode the fine-tuned model\n",
"response = fine_tuned_model.invoke(\n",
" \"Can you help categorize the following emails into positive, negative, and neutral?\",\n",
" **{\"temperature\": 0.5, \"max_new_tokens\": 1024}\n",
")\n",
"print(response)\n",
"\n",
"# Final flush to ensure all traces are logged\n",
"opik_tracer.flush()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "py312_llm_eval",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading

0 comments on commit 929a199

Please sign in to comment.