Skip to content

Visualization of Kaggle Birds Dataset using pre-trained FastViT TIMM model and Renumics Spotlight

License

Notifications You must be signed in to change notification settings

coderinsk/timm2spotlight

Repository files navigation

Bird Species Embedding and Visualization using TIMM2Spotlight

This project processes a bird species dataset, extracts embeddings using a pretrained model, and visualizes the results using Renumics Spotlight.

Table of Contents

Installation

  1. Clone the repository:

    git clone https://github.com/your-repo/bird-species-visualization.git
    cd bird-species-visualization
  2. Create and activate a virtual environment. Install all requirements.

Download Dataset

  1. Download the bird species dataset from Kaggle:

Go to the Kaggle dataset page and download the dataset: link

  1. Extract the dataset:

Extract the downloaded dataset into the data directory within the project folder. The directory structure should look like this:

bird-species-visualization/
├── data/
│   ├── birds.csv
│   ├── test/
│   │   ├── birdClass1/
│   │   │   └── bird1.jpg...
│   │   └── birdClass2/...
│   ├── train/
│   └── valid/
├── dataset.py
├── spotlight_visualization.py
└── README.md

Usage

  1. Run the script to process images and generate embeddings:
python spotlight_visualization.py

This script will:

  • Load the bird species dataset.
  • Use a pretrained model to generate embeddings for the images.
  • Save the results to a CSV file.
  1. Ensure the CSV file is created:

The script will create a file named bird_dataset_predictions.csv in the project directory.

Visualization

  1. Visualize the results with Renumics Spotlight:

After running the script, the visualization will automatically launch in Renumics Spotlight, displaying the images and their embeddings.

Visualization Example

screenshot_visualizatrion

About

Visualization of Kaggle Birds Dataset using pre-trained FastViT TIMM model and Renumics Spotlight

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages