This project processes a bird species dataset, extracts embeddings using a pretrained model, and visualizes the results using Renumics Spotlight.
-
Clone the repository:
git clone https://github.com/your-repo/bird-species-visualization.git cd bird-species-visualization
-
Create and activate a virtual environment. Install all requirements.
- Download the bird species dataset from Kaggle:
Go to the Kaggle dataset page and download the dataset: link
- Extract the dataset:
Extract the downloaded dataset into the data directory within the project folder. The directory structure should look like this:
bird-species-visualization/
├── data/
│ ├── birds.csv
│ ├── test/
│ │ ├── birdClass1/
│ │ │ └── bird1.jpg...
│ │ └── birdClass2/...
│ ├── train/
│ └── valid/
├── dataset.py
├── spotlight_visualization.py
└── README.md
- Run the script to process images and generate embeddings:
python spotlight_visualization.py
This script will:
- Load the bird species dataset.
- Use a pretrained model to generate embeddings for the images.
- Save the results to a CSV file.
- Ensure the CSV file is created:
The script will create a file named bird_dataset_predictions.csv in the project directory.
- Visualize the results with Renumics Spotlight:
After running the script, the visualization will automatically launch in Renumics Spotlight, displaying the images and their embeddings.
Visualization Example