braintaichi
leverages Taichi Lang to customize brain dynamics operators.
import taichi as ti
import braintaichi as bti
# define the custom kernel
@ti.kernel
def transpose_bool_homo_kernel(
values: ti.types.ndarray(ndim=1),
indices: ti.types.ndarray(ndim=1),
indptr: ti.types.ndarray(ndim=1),
events: ti.types.ndarray(ndim=1),
out: ti.types.ndarray(ndim=1)
):
value = values[0]
ti.loop_config(serialize=True)
for row_i in range(indptr.shape[0] - 1):
if events[row_i]:
for j in range(indptr[row_i], indptr[row_i + 1]):
out[indices[j]] += value
kernel = bti.XLACustomOp(
cpu_kernel=transpose_bool_homo_kernel,
gpu_kernel=transpose_bool_homo_kernel,
)
# run with the sample data
import numpy as np
import jax
import jax.numpy as jnp
from scipy.sparse import csr_matrix
csr = csr_matrix((np.random.rand(10, 10) < 0.5).astype(float))
events = np.random.rand(10) < 0.5
out = kernel(
jnp.array(csr.data),
jnp.array(csr.indices),
jnp.array(csr.indptr),
events,
outs=[jax.ShapeDtypeStruct([10], dtype=jnp.float32)]
)
print(out)
You can install braintaichi
via pip:
pip install braintaichi --upgrade
The official documentation is hosted on Read the Docs: https://braintaichi.readthedocs.io
We are building the brain dynamics programming ecosystem: https://ecosystem-for-brain-dynamics.readthedocs.io/
If you think braintaichi
is significant in your work, please consider to cite the following pubilication:
@inproceedings{wang2024brainpy,
title={A differentiable brain simulator bridging brain simulation and brain-inspired computing},
author={Wang, Chaoming and Zhang, Tianqiu and He, Sichao and Gu, Hongyaoxing and Li, Shangyang and Wu, Si},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024}
}