Skip to content

Module to calculate rotations based on Googles Mediapipe detection results

License

Notifications You must be signed in to change notification settings

cgtinker/mediapipe_rotations

Repository files navigation

Mediapipe Rotations

Currently in development process.

Future python package to calculate rotation data for Googles Mediapipe Detection results. The calculations heavly rely on the crate cgt_math which is also in development process.

Setup dev enviroment

Either run the setup.bash or setup manually:

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
maturin develop
pytest

Usage Example

import mediapipe as mp
import mediapipe_rotations as mpr
import cv2

mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_holistic = mp.solutions.holistic


def cvt2array(landmark_list):
    """ converts landmark list to list. """
    return [[landmark.x, landmark.y, landmark.z] for landmark in landmark_list.landmark]


cap = cv2.VideoCapture(0)
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
    while cap.isOpened():
        success, image = cap.read()
        if not success:
            print("Ignoring empty camera frame.")
            # If loading a video, use 'break' instead of 'continue'.
            continue

        # To improve performance, optionally mark the image as not writeable to
        # pass by reference.
        image.flags.writeable = False
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        results = holistic.process(image)

        # Get Detection Data
        pose, face, l_hand, r_hand = [], [], [], []

        if results.pose_landmarks:
            pose = cvt2array(results.pose_landmarks)

        if results.face_landmarks:
            face = cvt2array(results.face_landmarks)

        if results.left_hand_landmarks and results.right_hand_landmarks:
            l_hand = cvt2array(results.left_hand_landmarks)
            r_hand = cvt2array(results.right_hand_landmarks)
        elif results.left_hand_landmarks:
            l_hand = cvt2array(results.left_hand_landmarks)
        elif results.right_hand_landmarks:
            r_hand = cvt2array(results.right_hand_landmarks)

        # Calculate rotations
        pose_rotation_quaternion = mpr.pose(pose)
        hand_rotation_quaternionL = mpr.hand(l_hand)
        hand_rotation_quaternionR = mpr.hand(r_hand)
        hands_rotation_quaternion = mpr.hands([l_hand, r_hand])
        face_rotation_quaternion = mpr.face(face)
        holistic_rotation_quaternion = mpr.holistic([pose, face, l_hand, r_hand])

        # Draw landmark annotation on the image.
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        mp_drawing.draw_landmarks(
            image,
            results.face_landmarks,
            mp_holistic.FACEMESH_CONTOURS,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp_drawing_styles
                .get_default_face_mesh_contours_style())

        mp_drawing.draw_landmarks(
            image,
            results.pose_landmarks,
            mp_holistic.POSE_CONNECTIONS,
            landmark_drawing_spec=mp_drawing_styles
                .get_default_pose_landmarks_style())

        # Flip the image horizontally for a selfie-view display.
        cv2.imshow('MediaPipe Holistic', cv2.flip(image, 1))
        if cv2.waitKey(5) & 0xFF == 27:
            break
cap.release()

Results

The results come in quaternions. There are some blank spots in the returned array, mainly for easier indexing.

Face

Idx Target +
0 head +
1 chin +
2 mouth corner.L +
3 mouth corner.R +

Hand

Idx Target +
0 wrist +
1 thumb cmc +
2 thumb mcp +
3 thumb ip +
4 thumb tip
5 index finger mcp +
6 index finger pip +
7 index finger dip +
8 index finger tip
9 middle finger mcp +
10 middle finger pip +
11 middle finger dip +
12 middle finger tip
13 ring finger mcp +
14 ring finger pip +
15 ring finger dip +
16 ring finger tip
17 pinky mcp +
18 pinky pip +
19 pinky dip +
20 pinky tip

Pose

0 nose +
1 left eye inner
2 left eye
3 left eye outer
4 right eye inner
5 right eye
6 right eyerouter
7 left ear
8 right ear
9 mouth left
10 mouth right
11 left shoulder +
12 right shoulder +
13 left elbow +
14 right elbow +
15 left wrist +
16 right wrist +
17 left pinky
18 right pinky
19 left index
20 right index
21 left thumb
22 right thumb
23 left hip +
24 right hip +
25 left knee +
26 right knee +
27 left ankle +
28 right ankle +
29 left heel
30 right heel
31 left foot index
32 right foot index
33 hip center +
34 shoulder center +

About

Module to calculate rotations based on Googles Mediapipe detection results

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published