Skip to content

Commit

Permalink
Frequentist fitting utilities and notebook (#7)
Browse files Browse the repository at this point in the history
* multinomial experiments

* first tries of fitting the likelihood model

* likelihood fitting

* added notebook for fitting JN.1

* Apply formatter

* Refactor the code.

* Translate multinomial notebook from ipynb into qmd

* Translate frequentist notebook from ipynb into qmd

---------

Co-authored-by: Paweł Czyż <[email protected]>
  • Loading branch information
dr-david and pawel-czyz authored Nov 10, 2023
1 parent 761ba39 commit 889deb2
Show file tree
Hide file tree
Showing 7 changed files with 784 additions and 2 deletions.
109 changes: 109 additions & 0 deletions examples/20231102_multinom.qmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
## Experimentation with multinomial model

```{python}
import pandas as pd
import pymc as pm
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import arviz as az
import statsmodels.api as sm
import matplotlib.dates as mdates
import matplotlib.ticker as ticker
import matplotlib.cm as cm
import covvfit as cv
```

Load the data:
```{python}
data_path = '../private/data/robust_deconv2_noisy13.csv'
variants = [
# 'B.1.1.7', 'B.1.351', 'P.1', 'undetermined',
'B.1.617.2', 'BA.1', 'BA.2', 'BA.4', 'BA.5', 'BA.2.75',
'BQ.1.1', 'XBB.1.5', 'XBB.1.9', 'XBB.1.16', 'XBB.2.3', 'EG.5', "BA.2.86"
]
cities = ['Lugano (TI)', 'Zürich (ZH)', 'Chur (GR)', 'Altenrhein (SG)',
'Laupen (BE)', 'Genève (GE)', 'Basel (BS)', 'Porrentruy (JU)',
'Lausanne (VD)', 'Bern (BE)', 'Luzern (LU)', 'Solothurn (SO)',
'Neuchâtel (NE)', 'Schwyz (SZ)']
data = cv.load_data(data_path)
data2 = cv.preprocess_df(data, cities, variants, date_min='2021-11-01')
ts_lst, ys_lst = cv.make_data_list(data2, cities, variants)
```


Let's load one city only:
```{python}
ys = ys_lst[1]
ys = ys / ys.sum(0)
ts = ts_lst[1]
```

Now we can create model for this one city:
```{python}
from pymc.distributions.dist_math import factln
# model for just one city
def create_model5(
ts_lst,
ys_lst,
n=1.0,
coords={
# "cities":cities,
"variants":variants,
},
n_pred=60
):
ts_pred = np.arange(n_pred) + ts_lst.max()
with pm.Model(coords=coords) as model:
# sigma_var = pm.InverseGamma("sigma", alpha=2.1, beta=0.015, dims=["cities","variants"])
midpoint_var = pm.Normal("midpoint", mu=0.0, sigma=500.0, dims="variants")
# midpoint_sig = pm.InverseGamma("midpoint_sig", alpha=7.0, beta=60.0)
rate_var = pm.Gamma("rate", mu=0.15, sigma=0.1, dims="variants")
# rate_sig = pm.InverseGamma("rate_sigma", alpha=2.0005, beta=0.05)
n_eff_inv = pm.InverseGamma("n_eff_inv", alpha=20.0, beta=2.0)
n_eff = pm.Deterministic("n_eff", 1/n_eff_inv)
# n_eff = pm.TruncatedNormal("n_eff", mu=10, sigma=10, lower=1.0)
# n_eff = pm.Gamma("n_eff", alpha=1000, beta=100)
# Kaan's trick to avoid overflows
def softmax(x, rates, midpoints):
E = rates[:, None] * (x - midpoints[:, None])
E_max = E.max(axis=0)
un_norm = pm.math.exp(E - E_max)
return un_norm / (pm.math.sum(un_norm, axis=0))
ys_smooth = pm.Deterministic(f"ys_ideal",softmax(ts_lst, rate_var, midpoint_var), dims="variants")
ys_pred = pm.Deterministic(f"ys_pred",softmax(ts_pred, rate_var, midpoint_var), dims="variants")
# ys_wiggly = pm.Beta(f"ys_wiggly", mu=ys_smooth, nu=n_eff)
# make Multinom/n likelihood
def log_likelihood(y, p, n):
return n*pm.math.sum(y * pm.math.log(p) - factln(n*y), axis=0) + pm.math.log(n) + factln(n)
ys_noisy = pm.DensityDist(
f"ys_noisy",
ys_smooth,
n_eff,
logp=log_likelihood,
observed=ys_lst,
)
return model
with create_model(ts, ys, coords={
"variants":variants,
}):
idata_posterior = pm.sample(random_seed=65, chains=2, tune=500, draws=500)
```

Loading

0 comments on commit 889deb2

Please sign in to comment.