-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Frequentist fitting utilities and notebook (#7)
* multinomial experiments * first tries of fitting the likelihood model * likelihood fitting * added notebook for fitting JN.1 * Apply formatter * Refactor the code. * Translate multinomial notebook from ipynb into qmd * Translate frequentist notebook from ipynb into qmd --------- Co-authored-by: Paweł Czyż <[email protected]>
- Loading branch information
1 parent
761ba39
commit 889deb2
Showing
7 changed files
with
784 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
## Experimentation with multinomial model | ||
|
||
```{python} | ||
import pandas as pd | ||
import pymc as pm | ||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
import numpy as np | ||
import arviz as az | ||
import statsmodels.api as sm | ||
import matplotlib.dates as mdates | ||
import matplotlib.ticker as ticker | ||
import matplotlib.cm as cm | ||
import covvfit as cv | ||
``` | ||
|
||
Load the data: | ||
```{python} | ||
data_path = '../private/data/robust_deconv2_noisy13.csv' | ||
variants = [ | ||
# 'B.1.1.7', 'B.1.351', 'P.1', 'undetermined', | ||
'B.1.617.2', 'BA.1', 'BA.2', 'BA.4', 'BA.5', 'BA.2.75', | ||
'BQ.1.1', 'XBB.1.5', 'XBB.1.9', 'XBB.1.16', 'XBB.2.3', 'EG.5', "BA.2.86" | ||
] | ||
cities = ['Lugano (TI)', 'Zürich (ZH)', 'Chur (GR)', 'Altenrhein (SG)', | ||
'Laupen (BE)', 'Genève (GE)', 'Basel (BS)', 'Porrentruy (JU)', | ||
'Lausanne (VD)', 'Bern (BE)', 'Luzern (LU)', 'Solothurn (SO)', | ||
'Neuchâtel (NE)', 'Schwyz (SZ)'] | ||
data = cv.load_data(data_path) | ||
data2 = cv.preprocess_df(data, cities, variants, date_min='2021-11-01') | ||
ts_lst, ys_lst = cv.make_data_list(data2, cities, variants) | ||
``` | ||
|
||
|
||
Let's load one city only: | ||
```{python} | ||
ys = ys_lst[1] | ||
ys = ys / ys.sum(0) | ||
ts = ts_lst[1] | ||
``` | ||
|
||
Now we can create model for this one city: | ||
```{python} | ||
from pymc.distributions.dist_math import factln | ||
# model for just one city | ||
def create_model5( | ||
ts_lst, | ||
ys_lst, | ||
n=1.0, | ||
coords={ | ||
# "cities":cities, | ||
"variants":variants, | ||
}, | ||
n_pred=60 | ||
): | ||
ts_pred = np.arange(n_pred) + ts_lst.max() | ||
with pm.Model(coords=coords) as model: | ||
# sigma_var = pm.InverseGamma("sigma", alpha=2.1, beta=0.015, dims=["cities","variants"]) | ||
midpoint_var = pm.Normal("midpoint", mu=0.0, sigma=500.0, dims="variants") | ||
# midpoint_sig = pm.InverseGamma("midpoint_sig", alpha=7.0, beta=60.0) | ||
rate_var = pm.Gamma("rate", mu=0.15, sigma=0.1, dims="variants") | ||
# rate_sig = pm.InverseGamma("rate_sigma", alpha=2.0005, beta=0.05) | ||
n_eff_inv = pm.InverseGamma("n_eff_inv", alpha=20.0, beta=2.0) | ||
n_eff = pm.Deterministic("n_eff", 1/n_eff_inv) | ||
# n_eff = pm.TruncatedNormal("n_eff", mu=10, sigma=10, lower=1.0) | ||
# n_eff = pm.Gamma("n_eff", alpha=1000, beta=100) | ||
# Kaan's trick to avoid overflows | ||
def softmax(x, rates, midpoints): | ||
E = rates[:, None] * (x - midpoints[:, None]) | ||
E_max = E.max(axis=0) | ||
un_norm = pm.math.exp(E - E_max) | ||
return un_norm / (pm.math.sum(un_norm, axis=0)) | ||
ys_smooth = pm.Deterministic(f"ys_ideal",softmax(ts_lst, rate_var, midpoint_var), dims="variants") | ||
ys_pred = pm.Deterministic(f"ys_pred",softmax(ts_pred, rate_var, midpoint_var), dims="variants") | ||
# ys_wiggly = pm.Beta(f"ys_wiggly", mu=ys_smooth, nu=n_eff) | ||
# make Multinom/n likelihood | ||
def log_likelihood(y, p, n): | ||
return n*pm.math.sum(y * pm.math.log(p) - factln(n*y), axis=0) + pm.math.log(n) + factln(n) | ||
ys_noisy = pm.DensityDist( | ||
f"ys_noisy", | ||
ys_smooth, | ||
n_eff, | ||
logp=log_likelihood, | ||
observed=ys_lst, | ||
) | ||
return model | ||
with create_model(ts, ys, coords={ | ||
"variants":variants, | ||
}): | ||
idata_posterior = pm.sample(random_seed=65, chains=2, tune=500, draws=500) | ||
``` | ||
|
Oops, something went wrong.