-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
from pathlib import Path | ||
|
||
import awkward | ||
import numpy | ||
import pandas | ||
import pytest | ||
import sparse | ||
import tifffile as tf | ||
|
||
from ..catalog import in_memory | ||
from ..client import Context, from_context | ||
from ..server.app import build_app | ||
from ..structures.array import ArrayStructure, BuiltinDtype | ||
from ..structures.core import StructureFamily | ||
from ..structures.data_source import Asset, DataSource, Management | ||
from ..structures.table import TableStructure | ||
|
||
rng = numpy.random.default_rng(12345) | ||
|
||
df1 = pandas.DataFrame({"A": ["one", "two", "three"], "B": [1, 2, 3]}) | ||
df2 = pandas.DataFrame( | ||
{ | ||
"C": ["red", "green", "blue", "white"], | ||
"D": [10.0, 20.0, 30.0, 40.0], | ||
"E": [0, 0, 0, 0], | ||
} | ||
) | ||
df3 = pandas.DataFrame( | ||
{ | ||
"col1": ["one", "two", "three", "four", "five"], | ||
"col2": [1.0, 2.0, 3.0, 4.0, 5.0], | ||
} | ||
) | ||
arr1 = rng.random(size=(13, 15), dtype="float64") | ||
arr2 = rng.integers(0, 255, size=(5, 7, 3), dtype="uint8") | ||
img_data = rng.integers(0, 255, size=(5, 13, 17, 3), dtype="uint8") | ||
|
||
md = {"md_key1": "md_val1", "md_key2": 2} | ||
|
||
@pytest.fixture | ||
def tiff_sequence(tmpdir): | ||
sequence_directory = Path(tmpdir, "sequence") | ||
sequence_directory.mkdir() | ||
filepaths = [] | ||
for i in range(img_data.shape[0]): | ||
fpath = sequence_directory / f"temp{i:05}.tif" | ||
tf.imwrite(fpath, img_data[i, ...]) | ||
filepaths.append(fpath) | ||
|
||
yield filepaths | ||
|
||
|
||
@pytest.fixture | ||
def csv_file(tmpdir): | ||
fpath = Path(tmpdir, "test.csv") | ||
df3.to_csv(fpath, index=False) | ||
|
||
yield fpath | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def tree(tmp_path_factory): | ||
return in_memory(writable_storage=tmp_path_factory.getbasetemp()) | ||
|
||
|
||
@pytest.fixture(scope="module") | ||
def context(tree): | ||
with Context.from_app(build_app(tree)) as context: | ||
client = from_context(context) | ||
|
||
# Write data in the root container | ||
client.write_array(arr1, key="arr1", metadata={"md_key": "md_for_arr1"}) | ||
client.write_dataframe(df1, key="df1", metadata={"md_key": "md_for_df1"}) | ||
|
||
# Write data in subcontainers | ||
x = client.create_container(key="x", metadata=md) | ||
x.write_array(arr1, key="arr1", metadata={"md_key": "md_for_arr1"}) | ||
x.write_array(arr2, key="arr2", metadata={"md_key": "md_for_arr2"}) | ||
x.write_dataframe(df1, key="df1", metadata={"md_key": "md_for_df1"}) | ||
x.write_dataframe(df2, key="df2", metadata={"md_key": "md_for_df2"}) | ||
y = x.create_container(key="y", metadata=md) | ||
y.write_array(arr1, key="arr1", metadata={"md_key": "md_for_arr1"}) | ||
y.write_dataframe(df1, key="df1", metadata={"md_key": "md_for_df1"}) | ||
|
||
yield context | ||
|
||
|
||
def test_original_locations(context): | ||
client = from_context(context) | ||
arr_v = client.create_container(key = 'arr_v') | ||
arr_v.create_array_view(links=['/arr1'], key='arr1') | ||
arr_v.create_array_view(links=['/x/arr1'], key='x_arr1') | ||
arr_v.create_array_view(links=['/x/y/arr1'], key='x_y_arr1') | ||
|
||
for key in ('arr1', 'x_arr1', 'x_y_arr1'): | ||
assert numpy.array_equal(arr_v[key].read(), arr1) | ||
|
||
|
||
def test_table_columns(context): | ||
client = from_context(context) | ||
tbl_v = client.create_container(key = 'tbl_v') | ||
tbl_v.create_array_view(links=['/x/y/df1/A'], key='A') | ||
tbl_v.create_array_view(links=['/x/y/df1/B'], key='B') | ||
|
||
for key in ('A', 'B'): | ||
assert numpy.array_equal(tbl_v[key].read(), df1[key]) | ||
|
||
def test_slices(context): | ||
client = from_context(context) | ||
slc_v = client.create_container(key = 'slc_v') | ||
slc_v.create_array_view(links=['/x/df2/C'], key='C', slices=[(slice(0, 2),)]) | ||
assert numpy.array_equal(slc_v['C'].read(), df2['C'][0:2]) | ||
|
||
slc_v.create_array_view(links=['/x/arr2'], key='a2_v', slices=[(slice(0, 2), 1, ...)]) | ||
assert numpy.array_equal(slc_v['a2_v'].read(), arr2[slice(0, 2), 1, ...]) | ||
|
||
|
||
def test_external_assets(context, tiff_sequence, csv_file): | ||
client = from_context(context) | ||
|
||
# Write some data with external assets | ||
tiff_assets = [ | ||
Asset( | ||
data_uri=f"file://localhost{fpath}", | ||
is_directory=False, | ||
parameter="data_uris", | ||
num=i + 1, | ||
) | ||
for i, fpath in enumerate(tiff_sequence) | ||
] | ||
tiff_structure_0 = ArrayStructure( | ||
data_type=BuiltinDtype.from_numpy_dtype(numpy.dtype("uint8")), | ||
shape=(5, 13, 17, 3), | ||
chunks=((1, 1, 1, 1, 1), (13,), (17,), (3,)), | ||
) | ||
tiff_data_source = DataSource( | ||
mimetype="multipart/related;type=image/tiff", | ||
assets=tiff_assets, | ||
structure_family=StructureFamily.array, | ||
structure=tiff_structure_0, | ||
management=Management.external, | ||
) | ||
|
||
csv_assets = [ | ||
Asset( | ||
data_uri=f"file://localhost{csv_file}", | ||
is_directory=False, | ||
parameter="data_uris", | ||
) | ||
] | ||
csv_data_source = DataSource( | ||
mimetype="text/csv", | ||
assets=csv_assets, | ||
structure_family=StructureFamily.table, | ||
structure=TableStructure.from_pandas(df3), | ||
management=Management.external, | ||
) | ||
|
||
z = client.create_container(key="z") | ||
z.new( | ||
structure_family=StructureFamily.array, | ||
data_sources=[tiff_data_source], | ||
key="image", | ||
) | ||
z.new( | ||
structure_family=StructureFamily.table, | ||
data_sources=[csv_data_source], | ||
key="table", | ||
) | ||
|
||
ext_v = client.create_container(key = 'ext_v') | ||
ext_v.create_array_view(links=['/z/image'], key='image_v') | ||
ext_v.create_array_view(links=['/z/table/col1'], key='col1_v') | ||
ext_v.create_array_view(links=['/z/table/col2'], key='col2_v') | ||
assert numpy.array_equal(ext_v['image_v'].read(), img_data) | ||
assert numpy.array_equal(ext_v['col1_v'].read(), df3['col1']) | ||
assert numpy.array_equal(ext_v['col2_v'].read(), df3['col2']) |