Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add JAXopt solvers #46

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 89 additions & 0 deletions solvers/jaxopt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import warnings


from benchopt import BaseSolver, safe_import_context


with safe_import_context() as import_ctx:
import numpy as np
import jax
import jaxopt
import jax.numpy as jnp
import optax


@jax.jit
tomMoral marked this conversation as resolved.
Show resolved Hide resolved
def loss(beta, data, lmbd):
X, y = data
y_X_beta = y * X.dot(beta.flatten())
l2 = 0.5 * jnp.dot(beta, beta)
return jnp.log1p(jnp.exp(-y_X_beta)).sum() + lmbd * l2


@jax.jit
def _run_lbfgs_solver(X, y, lmbd, n_iter):
solver = jaxopt.LBFGS(fun=loss, maxiter=n_iter, tol=1e-15)
beta_init = jnp.zeros(X.shape[1])
res = solver.run(beta_init, data=(X, y), lmbd=lmbd)
return res.params


@jax.jit
def _run_ncg_solver(X, y, lmbd, n_iter):
solver = jaxopt.NonlinearCG(fun=loss, maxiter=n_iter, tol=1e-15)
beta_init = jnp.zeros(X.shape[1])
res = solver.run(beta_init, data=(X, y), lmbd=lmbd)
return res.params


@jax.jit
def _run_adam_solver(X, y, lmbd, n_iter):
opt = optax.adam(1e-3)
solver = jaxopt.OptaxSolver(opt=opt, fun=loss, maxiter=n_iter, tol=1e-15,
jit=True, unroll=False)
beta_init = jnp.zeros(X.shape[1])
res = solver.run(beta_init, data=(X, y), lmbd=lmbd)
return res.params


def _run_scipy_solver(X, y, lmbd, n_iter):
solver = jaxopt.ScipyMinimize(fun=loss, maxiter=n_iter, tol=1e-15, method='L-BFGS-B')
beta_init = jnp.zeros(X.shape[1])
res = solver.run(beta_init, data=(X, y), lmbd=lmbd)
return res.params


class Solver(BaseSolver):
name = 'jaxopt'

install_cmd = 'conda'
requirements = ['pip:jaxopt']

parameters = {
'solver': [
'lbfgs',
'scipy-lbfgs',
'ncg',
'adam',
],
}
parameter_template = "{solver}"

def set_objective(self, X, y, lmbd):
self.X, self.y, self.lmbd = jnp.array(X), jnp.array(y), lmbd
self.run(1) # compile jax function

def run(self, n_iter):
if self.solver == 'lbfgs':
self.coef_ = _run_lbfgs_solver(self.X, self.y, self.lmbd, n_iter)
elif self.solver == 'scipy-lbfgs':
self.coef_ = _run_scipy_solver(self.X, self.y, self.lmbd, n_iter)
elif self.solver == 'ncg':
self.coef_ = _run_ncg_solver(self.X, self.y, self.lmbd, n_iter)
elif self.solver == 'adam':
self.coef_ = _run_adam_solver(self.X, self.y, self.lmbd, n_iter)
else:
raise ValueError(f"Unknown solver {self.solver}")
tomMoral marked this conversation as resolved.
Show resolved Hide resolved

def get_result(self):
return np.array(self.coef_)