forked from AMReX-Codes/amrex
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Curl Curl solver: 4-color Gauss-Seidel smoother (AMReX-Codes#3778)
This implements the 4-color Gauss-Seidel smoother of Li et. al. 2020. "An Efficient Preconditioner for 3-D Finite Difference Modeling of the Electromagnetic Diffusion Process in the Frequency Domain", IEEE Transactions on Geoscience and Remote Sensing, 58, 500-509.
- Loading branch information
1 parent
2ecafcf
commit 9751217
Showing
10 changed files
with
959 additions
and
333 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
#ifndef AMREX_LU_SOLVER_H_ | ||
#define AMREX_LU_SOLVER_H_ | ||
#include <AMReX_Config.H> | ||
|
||
#include <AMReX_Arena.H> | ||
#include <AMReX_Array.H> | ||
#include <cmath> | ||
#include <limits> | ||
|
||
namespace amrex { | ||
|
||
// https://en.wikipedia.org/wiki/LU_decomposition | ||
|
||
template <int N, typename T> | ||
class LUSolver | ||
{ | ||
public: | ||
|
||
LUSolver () = default; | ||
|
||
LUSolver (Array2D<T, 0, N-1, 0, N-1, Order::C> const& a_mat); | ||
|
||
void define (Array2D<T, 0, N-1, 0, N-1, Order::C> const& a_mat); | ||
|
||
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE | ||
void operator() (T* AMREX_RESTRICT x, T const* AMREX_RESTRICT b) const | ||
{ | ||
for (int i = 0; i < N; ++i) { | ||
x[i] = b[m_piv(i)]; | ||
for (int k = 0; k < i; ++k) { | ||
x[i] -= m_mat(i,k) * x[k]; | ||
} | ||
} | ||
|
||
for (int i = N-1; i >= 0; --i) { | ||
for (int k = i+1; k < N; ++k) { | ||
x[i] -= m_mat(i,k) * x[k]; | ||
} | ||
x[i] *= m_mat(i,i); | ||
} | ||
} | ||
|
||
[[nodiscard]] AMREX_GPU_HOST_DEVICE | ||
Array2D<T,0,N-1,0,N-1,Order::C> invert () const | ||
{ | ||
Array2D<T,0,N-1,0,N-1,Order::C> IA; | ||
for (int j = 0; j < N; ++j) { | ||
for (int i = 0; i < N; ++i) { | ||
IA(i,j) = (m_piv(i) == j) ? T(1.0) : T(0.0); | ||
for (int k = 0; k < i; ++k) { | ||
IA(i,j) -= m_mat(i,k) * IA(k,j); | ||
} | ||
} | ||
for (int i = N-1; i >= 0; --i) { | ||
for (int k = i+1; k < N; ++k) { | ||
IA(i,j) -= m_mat(i,k) * IA(k,j); | ||
} | ||
IA(i,j) *= m_mat(i,i); | ||
} | ||
} | ||
return IA; | ||
} | ||
|
||
[[nodiscard]] AMREX_GPU_HOST_DEVICE | ||
T determinant () const | ||
{ | ||
T det = m_mat(0,0); | ||
for (int i = 1; i < N; ++i) { | ||
det *= m_mat(i,i); | ||
} | ||
det = T(1.0) / det; | ||
return (m_npivs % 2 == 0) ? det : -det; | ||
} | ||
|
||
private: | ||
|
||
void define_innard (); | ||
|
||
Array2D<T, 0, N-1, 0, N-1, Order::C> m_mat; | ||
Array1D<int, 0, N-1> m_piv; | ||
int m_npivs = 0; | ||
}; | ||
|
||
template <int N, typename T> | ||
LUSolver<N,T>::LUSolver (Array2D<T, 0, N-1, 0, N-1, Order::C> const& a_mat) | ||
: m_mat(a_mat) | ||
{ | ||
define_innard(); | ||
} | ||
|
||
template <int N, typename T> | ||
void LUSolver<N,T>::define (Array2D<T, 0, N-1, 0, N-1, Order::C> const& a_mat) | ||
{ | ||
m_mat = a_mat; | ||
define_innard(); | ||
} | ||
|
||
template <int N, typename T> | ||
void LUSolver<N,T>::define_innard () | ||
{ | ||
static_assert(N > 1); | ||
static_assert(std::is_floating_point_v<T>); | ||
|
||
for (int i = 0; i < N; ++i) { m_piv(i) = i; } | ||
m_npivs = 0; | ||
|
||
for (int i = 0; i < N; ++i) { | ||
T maxA = 0; | ||
int imax = i; | ||
|
||
for (int k = i; k < N; ++k) { | ||
auto const absA = std::abs(m_mat(k,i)); | ||
if (absA > maxA) { | ||
maxA = absA; | ||
imax = k; | ||
} | ||
} | ||
|
||
if (maxA < std::numeric_limits<T>::min()) { | ||
amrex::Abort("LUSolver: matrix is degenerate"); | ||
} | ||
|
||
if (imax != i) { | ||
std::swap(m_piv(i), m_piv(imax)); | ||
for (int j = 0; j < N; ++j) { | ||
std::swap(m_mat(i,j), m_mat(imax,j)); | ||
} | ||
++m_npivs; | ||
} | ||
|
||
for (int j = i+1; j < N; ++j) { | ||
m_mat(j,i) /= m_mat(i,i); | ||
for (int k = i+1; k < N; ++k) { | ||
m_mat(j,k) -= m_mat(j,i) * m_mat(i,k); | ||
} | ||
} | ||
} | ||
|
||
for (int i = 0; i < N; ++i) { | ||
m_mat(i,i) = T(1) / m_mat(i,i); | ||
} | ||
} | ||
|
||
} | ||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.