Skip to content

astrid-project/fuzzing-agent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ASTRID Fuzzing Agent

A python service which provides a fuzzer for runtime inspection. The agent primarily uses AFL for coverage guided fuzzing.

Usage

python3 agent.py --help
usage: agent.py [-h] --fuzzer FUZZER [--input INPUT] [--output OUTPUT]
                [--binary BINARY] [--config CONFIG] --profile PROFILE

Fuzzing agent for ASTRID

optional arguments:
  -h, --help            show this help message and exit
  --fuzzer FUZZER, -f FUZZER
                        Fuzzer to be used for fuzzing (AFL/driller)
  --input INPUT, -i INPUT
                        Testcases directory for input
  --output OUTPUT, -o OUTPUT
                        Working output directory for input
  --binary BINARY, -b BINARY
                        The binary to be used for fuzzing
  --config CONFIG, -c CONFIG
                        Path to the configuration file
  --profile PROFILE, -p PROFILE
                        Execution profile for the agent

To have AFL working, the following must be enabled on the host system for functionality

echo core >/proc/sys/kernel/core_pattern
cd /sys/devices/system/cpu
echo performance | tee cpu*/cpufreq/scaling_governor

The agent can be run on docker as well. To pull the latest image,

docker pull spockuto/astrid-fuzzing-agent

To start the fuzzer,

docker run --network host --name runtime_fuzzer \
			-dit -e BINARY_PATH='./pcap/afldemo' \
			-e KAFKA_ENDPOINT='127.0.0.1:9092' -e FLASK_PORT='5000' \
			-e SERVICE_TIMEOUT='10' -e FUZZING_AGENT_DEBUG='true' \
			spockuto/astrid-fuzzing-agent:latest
		
docker exec -it runtime_fuzzer python3 agent.py

Environment variables

BINARY_PATH - path to the binary on the outer container.
KAFKA_ENDPOINT - endpoint for the kafka bus
FLASK_PORT - port to run the API service of the agent on (default 5000)
SERVICE_TIMEOUT - the agent will produce the series of reports every n seconds
FUZZING_AGENT_DEBUG - boolean value for which on debug mode, the agent will print \
											the report to STDOUT instead of kafka

Kafka topics

They can be updated in the config/agent.cfg

"topics" : {
	"report" : "data_fuzzing_report",
	"comp_report" : "data_fuzzing_comp_report",
	"queue" : "data_fuzzing_queue" ,
	"crash" : "data_fuzzing_crash" ,
	"testcase" : "data_fuzzing_testcase"
}

Demo environment setup

Sysbox requirements

  • The node's OS must be Ubuntu Focal or Bionic (with a 5.0+ kernel).
  • We recommend a minimum of 4 CPUs (e.g., 2 cores with 2 hyperthreads) and 4GB of RAM in each worker node. Though this is not a hard requirement, smaller configurations may slow down Sysbox.
  • The Kubernetes cluster should use the CRIO runtime.

Setting up the k8s cluster

Assuming kubernetes, kubectl, kubeadm are already installed

sudo swapoff -a
systemctl start crio
sudo kubeadm init --pod-network-cidr=10.244.0.0/16 --cri-socket /var/run/crio/crio.sock
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.3.1/aio/deploy/recommended.yaml

To setup a admin login for the dashboard

git clone https://github.com/astrid-project/fuzzing-agent.git
cd fuzzing-agent
kubectl apply -f k8s/serviceaccount.yaml
kubectl apply -f k8s/clusterole.yaml
kubectl -n kubernetes-dashboard get secret $(kubectl -n kubernetes-dashboard get sa/admin-user -o jsonpath="{.secrets[0].name}") -o go-template="{{.data.token | base64decode}}"
kubectl proxy &
kubectl taint nodes --all node-role.kubernetes.io/master-
kubectl taint nodes --all node.kubernetes.io/disk-pressure-

Installing Sysbox on the cluster

kubectl label nodes vm sysbox-install=yes
kubectl apply -f https://raw.githubusercontent.com/nestybox/sysbox/master/sysbox-k8s-manifests/rbac/sysbox-deploy-rbac.yaml
kubectl apply -f https://raw.githubusercontent.com/nestybox/sysbox/master/sysbox-k8s-manifests/daemonset/sysbox-deploy-k8s.yaml
kubectl apply -f https://raw.githubusercontent.com/nestybox/sysbox/master/sysbox-k8s-manifests/runtime-class/sysbox-runtimeclass.yaml

Persistent Volume

We need to setup a Persistent volume for communication between the packetcapture pod and fuzzing-agent pod. They can't run on the same pod since sysbox runtime doesn't allow priveleged pods which is polycubed requirement.

mkdir -p /home/sekar/k8spv
kubectl apply -f k8s/pv-storage.yaml
kubectl apply -f k8s/pv-claim.yaml

Bring up the pods

The fuzzing pod will automatically bring up the nested containers. Currently we are using a dummy container as the upper container. But for the demo, it will be replaced by the container who's service needs to be fuzzed.

kubectl apply -f k8s/fuzzing-pod.yaml
kubectl apply -f k8s/packetcapture.yaml

Finding the virtual interface

To attach the virtual interface of the fuzzing pod for packet capture, we need to use a bit of manual networking. This is because Flannel is used to setup the CNI. However, in the demo environment, pcn-k8s will be used (I guess?) which allows cubes to be attached easily.

To figure out the virtual interface,

kubectl exec astrid-fuzzing-demo-pod -- ip link list | awk -F': ' '{print $2}'

lo eth0@if27 docker0

ip link list | awk -F': ' '{print $1 $2}'

25veth542502ba@if3 link/ether 96:1f:4b:60:02:16 brd ff:ff:ff:ff:ff:ff link-netns 89c697a3-fde4-4449-a670-f06f6fb0d492 26vethdecfae9e@if3 link/ether 0e:b7:67:39:9d:52 brd ff:ff:ff:ff:ff:ff link-netns c12d4715-5dc2-4b84-b10f-d1f50ca12f5a 27veth2c0a4ed8@if3 link/ether 1a:24:6a:17:d3:04 brd ff:ff:ff:ff:ff:ff link-netns e7b0a157-ae30-4719-be73-0b9dd3335ec0

Setting up the packetcapture service

polycubectl packetcapture add mysniffer capture=bidirectional
polycubectl attach mysniffer veth2c0a4ed8
polycubectl mysniffer set dump="/packetcapture/dump"
polycubectl mysniffer set filter=all
polycubectl detach mysniffer veth2c0a4ed8

The service will automatically create pcap in the shared persistent volume, which will periodically be parsed and deleted by the fuzzing agent.

Running the agent

The agent needs to be executed through the LCP, for which the agent registration and instantiation files are present in config/ directory

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published