This repository was forked from https://bitbucket.org/amitibo/cyipopt and is now considered the primary repository. The fork includes a SciPy-style interface, ability to handle exceptions in the callback functions, and docker container for easy usage.
Ipopt (Interior Point OPTimizer, pronounced eye-pea-opt) is a software package for large-scale nonlinear optimization. Ipopt is available from the COIN-OR initiative, under the Eclipse Public License (EPL).
cyipopt is a Python wrapper around Ipopt. It enables using Ipopt from the comfort of the Python programming language.
Anaconda | |
PyPi | |
Travis CI | |
Appveyor |
For simple cases where you do not need the full power of sparse and structured
Jacobians etc, cyipopt
provides the function minimize_ipopt
which has
the same behaviour as scipy.optimize.minimize
, for example:
from scipy.optimize import rosen, rosen_der
from ipopt import minimize_ipopt
x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
res = minimize_ipopt(rosen, x0, jac=rosen_der)
print(res)
The Anaconda Python Distribution is one of the easiest ways to install Python and associated pre-complied packages for Linux, Mac, and Windows. Once Anaconda (or miniconda) is installed, you can install cyipopt on Linux and Mac from the Conda Forge channel with:
conda install -c conda-forge cyipopt
The above command will install binary versions of all the necessary dependencies and cyipopt. Note that there currently are no Windows binaries. You will have to install from source from Windows or if you want a customized installation, e.g. with MKL, HSL, etc.
To begin installing from source you will need to install the following dependencies:
- C/C++ compiler
- pkg-config [only for Linux and Mac]
- Ipopt [>= 3.10.1 for Windows]
- Python 2.7 or 3.6+
- setuptools
- cython
- numpy
- six
- future
- scipy [optional]
- mkl [windows]
The binaries and header files of the Ipopt package can be obtained from http://www.coin-or.org/download/binary/Ipopt/. These include a version compiled against the MKL library. Or you can build Ipopt from source. The remaining dependencies can be installed with conda or other package managers.
Download the source files of cyipopt and update setup.py
to point to the
header files and binaries of the Ipopt package, if LD_LIBRARY_PATH
and
pkg_config
are not setup to find ipopt on their own.
Then, execute:
python setup.py install
Install the dependencies with conda (Anaconda or Miniconda):
conda.exe install -c conda-forge numpy cython future six setuptools mkl
Additionally, make sure you have a C compiler setup to compile Python C extensions, e.g. Visual C++. Build tools for VS2019 https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019 have been tested to work for conda Python 3.7 (see mechmotum#52).
Download and extract the cyipopt source code from Github or PyPi.
Download a precompiled version of Ipopt that includes the DLL files from
http://www.coin-or.org/download/binary/Ipopt/. Note that the current setup only
supports Ipopt >= 3.10.1. It is advised to use the build 3.11.0 by downloading
the Ipopt-3.11.0-Win32-Win64-dll.7z
archive. After Ipopt is extracted, the lib
and include
folders should
be in the root cyipopt directory, i.e. adjacent to the setup.py
file.
Alternatively, you can set the environment variable IPOPTWINDIR
to point to
the directory that contains the lib
and include
directories.
Finally, execute:
python setup.py install
NOTE: Only conda Python has been tested to work at the moment, and not the official python.org distribution. There is likely a binary compatibility issue between the C compiler used to build IPOPT and that used for compiling Python extensions in the official Python distribution (see mechmotum#52).
All of the dependencies can be installed with Ubuntu's package manager:
sudo apt install build-essential pkg-config python-dev python-six cython python-numpy coinor-libipopt1v5 coinor-libipopt-dev
The NumPy and IPOPT libs and headers are installed in standard locations, so
you should not need to set LD_LIBRARY_PATH
or PKG_CONFIG_PATH
.
Now run python setup.py build
to compile cyipopt. In the output of this
command you should see two calls to gcc
for compiling and linking. Make
sure both of these are pointing to the correct libraries and headers. They will
look something like this (formatted and commented for easy viewing here):
$ python setup.py build ... x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -Wdate-time -D_FORTIFY_SOURCE=2 -g -fdebug-prefix-map=/build/python2.7-3hk45v/python2.7-2.7.15~rc1=. -fstack-protector-strong -Wformat -Werror=format-security -fPIC -I/usr/local/include/coin # points to IPOPT headers -I/usr/local/include/coin/ThirdParty # points to IPOPT third party headers -I/usr/lib/python2.7/dist-packages/numpy/core/include # points to NumPy headers -I/usr/include/python2.7 # points to Python 2.7 headers -c src/cyipopt.c -o build/temp.linux-x86_64-2.7/src/cyipopt.o x86_64-linux-gnu-gcc -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -Wdate-time -D_FORTIFY_SOURCE=2 -g -fdebug-prefix-map=/build/python2.7-3hk45v/python2.7-2.7.15~rc1=. -fstack-protector-strong -Wformat -Werror=format-security -Wl,-Bsymbolic-functions -Wl,-z,relro -Wdate-time -D_FORTIFY_SOURCE=2 -g -fdebug-prefix-map=/build/python2.7-3hk45v/python2.7-2.7.15~rc1=. -fstack-protector-strong -Wformat -Werror=format-security build/temp.linux-x86_64-2.7/src/cyipopt.o -L/usr/local/lib -L/lib/../lib -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/5 -L/usr/lib/gcc/x86_64-linux-gnu/5/../../.. -L/usr/lib/gcc/x86_64-linux-gnu/5/../../../../lib -L/usr/lib/gcc/x86_64-linux-gnu/5/../../../x86_64-linux-gnu -lipopt -llapack -lblas -lm -ldl -lcoinmumps -lblas -lgfortran -lm -lquadmath # linking to relevant libs -lcoinhsl -llapack -lblas -lgfortran -lm -lquadmath -lcoinmetis # linking to relevant libs -o build/lib.linux-x86_64-2.7/cyipopt.so ...
You can check that everything linked correctly with ldd
:
$ ldd build/lib.linux-x86_64-2.7/cyipopt.so linux-vdso.so.1 (0x00007ffc1677c000) libipopt.so.0 => /usr/local/lib/libipopt.so.0 (0x00007fcdc8668000) libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fcdc8277000) libcoinmumps.so.0 => /usr/local/lib/libcoinmumps.so.0 (0x00007fcdc7eef000) libcoinhsl.so.0 => /usr/local/lib/libcoinhsl.so.0 (0x00007fcdc7bb4000) liblapack.so.3 => /usr/lib/x86_64-linux-gnu/liblapack.so.3 (0x00007fcdc732e000) libblas.so.3 => /usr/lib/x86_64-linux-gnu/libblas.so.3 (0x00007fcdc70d3000) libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fcdc6ecf000) libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007fcdc6b46000) libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fcdc67a8000) /lib64/ld-linux-x86-64.so.2 (0x00007fcdc8d20000) libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007fcdc6590000) libcoinmetis.so.0 => /usr/local/lib/libcoinmetis.so.0 (0x00007fcdc6340000) libgfortran.so.3 => /usr/lib/x86_64-linux-gnu/libgfortran.so.3 (0x00007fcdc600f000) libopenblas.so.0 => /usr/lib/x86_64-linux-gnu/libopenblas.so.0 (0x00007fcdc3d69000) libgfortran.so.4 => /usr/lib/x86_64-linux-gnu/libgfortran.so.4 (0x00007fcdc398a000) libquadmath.so.0 => /usr/lib/x86_64-linux-gnu/libquadmath.so.0 (0x00007fcdc374a000) libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fcdc352b000)
And finally install the package into Python's default package directory:
$ python setup.py install
Note that you may or may not want to install this package system wide, i.e.
prepend sudo
to the above command, but it is safest to install into your
user space, i.e. what pip install --user
does, or setup a virtual
environment with tools like venv or conda. If you use virtual environments you
will need to be careful about selecting headers and libraries for packages in
or out of the virtual environments in the build step. Note that six, cython,
and numpy could alternatively be installed using Python specific package
managers, e.g. pip install six cython numpy
.
Install system wide dependencies:
$ sudo apt install pkg-config python-dev wget $ sudo apt build-dep coinor-libipopt1v5
Install pip
so all Python packages can be installed via pip
:
$ sudo apt install python-pip
Then use pip
to install the following packages:
$ pip install --user numpy cython six future
The Ipopt compilation instructions are derived from https://www.coin-or.org/Ipopt/documentation/node14.html. If you get errors, start there for help.
Download Ipopt source code. Choose the version that you would like to have from <https://www.coin-or.org/download/source/Ipopt/>. For example:
$ cd ~ $ wget https://www.coin-or.org/download/source/Ipopt/Ipopt-3.12.11.tgz
Extract the Ipopt source code:
$ tar -xvf Ipopt-3.12.11.tgz
Create a temporary environment variable pointing to the Ipopt directory:
export IPOPTDIR=~/Ipopt-3.12.11
To use linear solvers other than the default mumps, e.g. ma27, ma57, ma86
solvers, the HSL
package are needed. HSL
can be downloaded from its
official website <http://www.hsl.rl.ac.uk/ipopt/>.
Extract HSL
source code after you get it. Rename the extracted folder to
coinhsl
and copy it in the HSL folder: Ipopt-3.12.11/ThirdParty/HSL
Build Ipopt:
$ mkdir $IPOPTDIR/build $ cd $IPOPTDIR/build $ ../configure $ make $ make test
Add make install
if you want a system wide install.
Set environment variables:
$ export IPOPT_PATH="~/Ipopt-3.12.11/build" $ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$IPOPT_PATH/lib/pkgconfig $ export PATH=$PATH:$IPOPT_PATH/bin
Get help from this web-page if you get errors in setting environments:
Now compile cyipopt
. Download the cyipopt
source code from PyPi, for
example:
$ cd ~ $ wget https://files.pythonhosted.org/packages/05/57/a7c5a86a8f899c5c109f30b8cdb278b64c43bd2ea04172cbfed721a98fac/ipopt-0.1.9.tar.gz $ tar -xvf ipopt-0.1.8.tar.gz $ cd ipopt
Compile cyipopt
:
$ python setup.py build
If there is no error, then you have compiled cyipopt
successfully
Check that everything linked correctly with ldd
$ ldd build/lib.linux-x86_64-2.7/cyipopt.so linux-vdso.so.1 (0x00007ffe895e1000) libipopt.so.1 => /home/<username>/Ipopt-3.12.11/build/lib/libipopt.so.1 (0x00007f74efc2a000) libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f74ef839000) libcoinmumps.so.1 => /home/<username>/Ipopt-3.12.11/build/lib/libcoinmumps.so.1 (0x00007f74ef4ae000) libcoinhsl.so.1 => /home/<username>/Ipopt-3.12.11/build/lib/libcoinhsl.so.1 (0x00007f74ef169000) liblapack.so.3 => /usr/lib/x86_64-linux-gnu/liblapack.so.3 (0x00007f74ee8cb000) libblas.so.3 => /usr/lib/x86_64-linux-gnu/libblas.so.3 (0x00007f74ee65e000) libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f74ee45a000) libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f74ee0d1000) libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f74edd33000) /lib64/ld-linux-x86-64.so.2 (0x00007f74f02c0000) libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f74edb1b000) libcoinmetis.so.1 => /home/<username>/Ipopt-3.12.11/build/lib/libcoinmetis.so.1 (0x00007f74ed8ca000) libgfortran.so.4 => /usr/lib/x86_64-linux-gnu/libgfortran.so.4 (0x00007f74ed4eb000)
Install cyipopt
(prepend sudo
if you want a system wide install):
$ python setup.py install
To use cyipopt
you will need to set the LD_LIBRARY_PATH
to point to
your Ipopt install if you did not install it to a standard location. For
example:
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/Ipopt-3.12.11/build/lib
You can add this to your shell's configuration file if you want it set every
time you open your shell, for example the following line can it can be added to
your ~/.bashrc
$ echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/Ipopt-3.12.11/build/lib' >> ~/.bashrc
Now you should be able to run a cyipopt
example:
$ cd test $ python -c "import ipopt" $ python examplehs071.py
If it could be run successfully, the optimization will start with the following descriptions:
****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** This is Ipopt version 3.12.11, running with linear solver ma27. ...
The subdirectory docker
contains a docker container with preinstalled ipopt
and cyipopt. To build the container, cd into the docker
directory and run
make
. Then you can start the container by:
$ docker run -it matthiask/ipopt /bin/bash
and either call ipopt
directly or start a ipython shell and import ipopt
.
The subdirectory vagrant
contains a Vagrantfile
that installs ipopt and
cyipopt in OS provision. To build the environment, cd into the vagrant
directory and run vagrant up
(Requires that you have Vagrant+VirtualBox
installed). Then you can access the system by:
$ vagrant ssh
and either call ipopt
directly or start a python shell and import
ipopt
. Also, if you get source files
<http://www.coin-or.org/download/binary/Ipopt/> of coinhsl and put it in the
vagrant
directory, the vagrant provision will detect and add them in the
ipopt compiling process, and then you will have ma57, ma27, and other solvers
available on ipopt binary (ma97 and mc68 were removed to avoid compilation
errors).
After installing:
$ cd doc $ make html
Then, direct your browser to build/html/index.html
.
You can test the installation by running the examples under the folder test\
.
cyipopt is open-source code released under the EPL license.
For bug reports use the github issue tracker. You can also send wishes, comments, patches, etc. to [email protected]