-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added python script used in PlutoSDR spectral analysis page
- Loading branch information
1 parent
24d73de
commit 9fe13a0
Showing
1 changed file
with
206 additions
and
0 deletions.
There are no files selected for viewing
206 changes: 206 additions & 0 deletions
206
bindings/python/examples/gn_doc_spectral_analysis_plutosdr.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
import adi | ||
import matplotlib.pyplot as pl | ||
import genalyzer as gn | ||
import numpy as np | ||
from scipy import signal | ||
from tabulate import tabulate | ||
import pprint | ||
|
||
# Create Pluto object and Configure properties | ||
sdr = adi.Pluto(uri="ip:192.168.2.1") | ||
sdr.rx_rf_bandwidth = 4000000 | ||
sdr.tx_lo = 1000000000 | ||
sdr.rx_lo = sdr.tx_lo | ||
sdr.tx_cyclic_buffer = True | ||
sdr.tx_hardwaregain_chan0 = -30 # Reduce transmit gain when PlutoSDR ports are connected by a loopback cable | ||
sdr.gain_control_mode_chan0 = "slow_attack" | ||
sdr.rx_buffer_size = 2**15 | ||
sdr.sample_rate = 4000000 | ||
|
||
# Sinusoidal tone settings | ||
freq = 350000 # tone frequency | ||
ampl_dbfs = 0.0 # amplitude of the tone in dBFS | ||
fsr = 2.0 # full-scale range of I/Q components of the complex tone | ||
ampl = (fsr / 2) * 10 ** (ampl_dbfs / 20) # amplitude of the tone in linear scale | ||
|
||
# Trasmit complex sinusoidal tone using the DDS | ||
sdr.dds_single_tone(freq, ampl) | ||
|
||
# Get data from radio (allow a few buffer pulls for AGC to settle) | ||
for n in range(10): | ||
x = sdr.rx() | ||
|
||
# FFT configuration | ||
navg = 1 # number of FFT averages | ||
nfft = int(sdr.rx_buffer_size/navg) # FFT-order | ||
window = gn.Window.BLACKMAN_HARRIS # window function to apply | ||
axis_type = gn.FreqAxisType.DC_CENTER # axis type | ||
axis_fmt = gn.FreqAxisFormat.FREQ # axis-format | ||
qres = 12 # PlutoSDR data resolution in bits | ||
code_fmt = gn.CodeFormat.TWOS_COMPLEMENT # integer data format | ||
|
||
# Compute FFT | ||
x_re = np.array(x.real).astype(np.int16) | ||
x_im = np.array(x.imag).astype(np.int16) | ||
fft_cplx = gn.fft(x_re, x_im, qres, navg, nfft, window, code_fmt) | ||
freq_axis = gn.freq_axis(nfft, axis_type, sdr.sample_rate, axis_fmt) | ||
fft_db = gn.db(fft_cplx) | ||
if gn.FreqAxisType.DC_CENTER == axis_type: | ||
fft_db = gn.fftshift(fft_db) | ||
|
||
# Fourier analysis configuration | ||
test_label = "fa" | ||
gn.fa_create(test_label) | ||
|
||
num_harmonics = 3 # number of harmonics to analyze | ||
ssb_fund = 6 # number of single-side bins for the signal component | ||
ssb_rest = 4 # default number of single-side bins for non-signal components | ||
ssb_dc = 2 # number of single-side bins for the DC-component | ||
signal_component_label = 'A' | ||
gn.fa_ssb(test_label, gn.FaSsb.DEFAULT, ssb_rest) | ||
gn.fa_max_tone(test_label, signal_component_label, gn.FaCompTag.SIGNAL, ssb_fund) | ||
gn.fa_fsample(test_label, sdr.sample_rate) | ||
gn.fa_hd(test_label, num_harmonics) | ||
gn.fa_ssb(test_label, gn.FaSsb.DC, ssb_dc) | ||
|
||
# Fourier analysis execution | ||
results = gn.fft_analysis(test_label, fft_cplx, nfft, axis_type) | ||
|
||
annots = gn.fa_annotations(results, axis_type, axis_fmt) | ||
print('annots["labels"]: ') | ||
labels_head = ('frequency (Hz)', 'magnitude (dBFs)', 'component label') | ||
labels_table = tabulate(annots["labels"], headers=labels_head, tablefmt="grid") | ||
print(labels_table, "\n") | ||
|
||
print('annots["tone_boxes"]: ') | ||
c1 = [x[0] for x in annots["tone_boxes"]] | ||
c2 = [x[2] for x in annots["tone_boxes"]] | ||
tone_boxes_head = ('box left boundary (Hz)', 'width (Hz)') | ||
tone_boxes_table = tabulate(map(list, zip(*(c1, c2))), headers=tone_boxes_head, tablefmt="grid") | ||
print(tone_boxes_table, "\n") | ||
|
||
print('+----------------+') | ||
print("results dictionary") | ||
print('+----------------+') | ||
pprint.pprint(results) | ||
|
||
# plot | ||
toneDC_Hz = annots["labels"][0][0] | ||
toneDC_bin = toneDC_Hz/(sdr.sample_rate/nfft) | ||
toneDC_mag = fft_db[int(toneDC_bin+0.5*nfft)] | ||
toneA_Hz = annots["labels"][1][0] | ||
toneA_bin = toneA_Hz/(sdr.sample_rate/nfft) | ||
toneA_mag = fft_db[int(toneA_bin+0.5*nfft)] | ||
toneA_im_Hz = annots["labels"][2][0] | ||
toneA_im_bin = toneA_im_Hz/(sdr.sample_rate/nfft) | ||
toneA_im_mag = fft_db[int(toneA_im_bin+0.5*nfft)] | ||
tone2A_Hz = annots["labels"][3][0] | ||
tone2A_bin = tone2A_Hz/(sdr.sample_rate/nfft) | ||
tone2A_mag = fft_db[int(tone2A_bin+0.5*nfft)] | ||
tone2A_im_Hz = annots["labels"][4][0] | ||
tone2A_im_bin = tone2A_im_Hz/(sdr.sample_rate/nfft) | ||
tone2A_im_mag = fft_db[int(tone2A_im_bin+0.5*nfft)] | ||
tone3A_im_Hz = annots["labels"][5][0] | ||
tone3A_im_bin = tone3A_im_Hz/(sdr.sample_rate/nfft) | ||
tone3A_im_mag = fft_db[int(tone3A_im_bin+0.5*nfft)] | ||
toneWO_Hz = annots["labels"][6][0] | ||
toneWO_bin = toneWO_Hz/(sdr.sample_rate/nfft) | ||
toneWO_mag = fft_db[int(toneWO_bin+0.5*nfft)] | ||
|
||
sfdr = results["sfdr"] | ||
nsd = results["nsd"] | ||
abn = results["abn"] | ||
snr = results["snr"] | ||
fsnr = results["fsnr"] | ||
sinad = results["sinad"] | ||
scale_MHz = 1e-6 | ||
fig, ax = pl.subplots() | ||
fig.clf() | ||
pl.plot(freq_axis*scale_MHz, fft_db) | ||
pl.grid(True) | ||
pl.xlabel('frequency (MHz)') | ||
pl.ylabel('magnitude (dBFs)') | ||
pl.xlim(freq_axis[0]*scale_MHz, freq_axis[-1]*scale_MHz) | ||
pl.ylim(-140.0, 20.0) | ||
for x, y, label in annots["labels"]: | ||
if label == 'dc': | ||
pl.annotate(label+": ["+f"{toneDC_Hz:.2f}"+" ,"+f"{toneDC_mag:.2f}"+"]", | ||
xy=(x*scale_MHz, toneDC_mag), | ||
xytext=(x*scale_MHz, -10), | ||
color = 'red', | ||
horizontalalignment="center", | ||
arrowprops=dict(arrowstyle='->',color='red',lw=1)) | ||
elif label == 'A': | ||
pl.annotate(label+": ["+f"{toneA_Hz:.2f}"+" ,"+f"{toneA_mag:.2f}"+"]", | ||
xy=(x*scale_MHz, toneA_mag), | ||
xytext=(x*scale_MHz, 10), | ||
color = 'black', | ||
horizontalalignment="center", | ||
arrowprops=dict(arrowstyle='->',color='black',lw=1)) | ||
elif label == '-A': | ||
pl.annotate(label+": ["+f"{toneA_im_Hz:.2f}"+" ,"+f"{toneA_im_mag:.2f}"+"]", | ||
xy=(x*scale_MHz, toneA_im_mag), | ||
xytext=(x*scale_MHz, -20), | ||
color = 'black', | ||
horizontalalignment="center", | ||
arrowprops=dict(arrowstyle='->',color='black',lw=1)) | ||
elif label == '2A': | ||
pl.annotate(label+": ["+f"{tone2A_Hz:.2f}"+" ,"+f"{tone2A_mag:.2f}"+"]", | ||
xy=(x*scale_MHz, tone2A_mag), | ||
xytext=(x*scale_MHz, -40), | ||
color = 'green', | ||
horizontalalignment="center", | ||
arrowprops=dict(arrowstyle='->',color='green',lw=1)) | ||
elif label == '-2A': | ||
pl.annotate(label+": ["+f"{tone2A_im_Hz:.2f}"+" ,"+f"{tone2A_im_mag:.2f}"+"]", | ||
xy=(x*scale_MHz, tone2A_im_mag), | ||
xytext=(x*scale_MHz, -40), | ||
color = 'green', | ||
horizontalalignment="center", | ||
arrowprops=dict(arrowstyle='->',color='green',lw=1)) | ||
elif label == '-3A': | ||
pl.annotate(label+": ["+f"{tone3A_im_Hz:.2f}"+" ,"+f"{tone3A_im_mag:.2f}"+"]", | ||
xy=(x*scale_MHz, tone3A_im_mag), | ||
xytext=(x*scale_MHz, -60), | ||
color = 'magenta', | ||
horizontalalignment="center", | ||
arrowprops=dict(arrowstyle='->',color='magenta',lw=1)) | ||
elif label == 'wo': | ||
pl.annotate(label+": ["+f"{toneWO_Hz:.2f}"+" ,"+f"{toneWO_mag:.2f}"+"]", | ||
xy=(x*scale_MHz, toneWO_mag), | ||
xytext=(x*scale_MHz, -80), | ||
color = 'magenta', | ||
horizontalalignment="center", | ||
arrowprops=dict(arrowstyle='->',color='magenta',lw=1)) | ||
else: | ||
pl.annotate(label, xy=(x*scale_MHz, y), ha="center", va="bottom") | ||
pl.axhline(y = toneA_mag, color = 'k', linestyle = '-') | ||
pl.axhline(y = toneWO_mag, color = 'k', linestyle = '-') | ||
pl.annotate('', | ||
xy=(1.25,toneWO_mag), | ||
xytext=(1.25,toneA_mag), | ||
arrowprops=dict(arrowstyle='<->',color='black',lw=1)) | ||
pl.annotate('SFDR'+": "+f"{sfdr:.2f}"+' dB', | ||
xy=(1.25, -40), | ||
xytext=(1.25, -40), | ||
verticalalignment="center", | ||
rotation=270) | ||
pl.axhline(y = abn, color = 'r', linestyle = '-') | ||
pl.annotate('ABN'+": "+f"{abn:.2f}"+' dB', | ||
xy=(0.5, -100), | ||
xytext=(0.5, -100), | ||
color = 'red', | ||
ha="center") | ||
pl.axhline(y = nsd, color = 'r', linestyle = '-') | ||
pl.annotate('NSD'+": "+f"{nsd:.2f}"+' dB', | ||
xy=(0.5, -120), | ||
xytext=(0.5, -120), | ||
color = 'red', | ||
ha="center") | ||
textstr = '\n'.join(( | ||
'SNR'+": "+f"{snr:.2f}"+' dB', | ||
'FSNR'+": "+f"{fsnr:.2f}"+' dB', | ||
'SINAD'+": "+f"{sinad:.2f}"+' dB')) | ||
props = dict(boxstyle='round', facecolor='wheat', alpha=0) | ||
ax.text(0.5, 0.5, textstr, fontsize=14, bbox=props) | ||
pl.savefig('spectral_analysis_summary_pluto.png') |