pip install chromadbx
- Query Builder - build queries using a builder pattern
- ID generation - generate IDs for documents
- Embeddings - generate embeddings for your documents:
- OnnxRuntime embeddings
- Llama.cpp embeddings
- Google Vertex AI embeddings
- Mistral AI embeddings
- Cloudflare Workers AI embeddings
- SpaCy embeddings
- Together embeddings.
- Nomic embeddings.
- ✨ Reranking - rerank documents and query results using Cohere, OpenAI, or custom reranking functions.
Supported filters:
$eq
- equal to (string, int, float)$ne
- not equal to (string, int, float)$gt
- greater than (int, float)$gte
- greater than or equal to (int, float)$lt
- less than (int, float)$lte
- less than or equal to (int, float)$in
- in (list of strings, ints, floats,bools)$nin
- not in (list of strings, ints, floats,bools)
Where:
import chromadb
from chromadbx.core.queries import eq, where, ne, and_
client = chromadb.PersistentClient(path="path/to/db")
collection = client.get_collection("collection_name")
collection.query(where=where(and_(eq("a", 1), ne("b", "2"))))
# {'$and': [{'a': ['$eq', 1]}, {'b': ['$ne', '2']}]}
Where Document:
import chromadb
from chromadbx.core.queries import where_document, contains, not_contains, LogicalOperator
client = chromadb.PersistentClient(path="path/to/db")
collection = client.get_collection("collection_name")
collection.query(where_document=where_document(contains("this is a document", "this is another document")))
# {'$and': [{'$contains': 'this is a document'}, {'$contains': 'this is another document'}]}
collection.query(
where_document=where_document(contains("this is a document", "this is another document", op=LogicalOperator.OR)))
# {'$or': [{'$contains': 'this is a document'}, {'$contains': 'this is another document'}]}
import chromadb
from chromadbx import IDGenerator
from functools import partial
from typing import Generator
def sequential_generator(start: int = 0) -> Generator[str, None, None]:
_next = start
while True:
yield f"{_next}"
_next += 1
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
idgen = IDGenerator(len(my_docs), generator=partial(sequential_generator, start=10))
col.add(ids=idgen, documents=my_docs)
import chromadb
from chromadbx import UUIDGenerator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=UUIDGenerator(len(my_docs)), documents=my_docs)
import chromadb
from chromadbx import ULIDGenerator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=ULIDGenerator(len(my_docs)), documents=my_docs)
Random SHA256:
import chromadb
from chromadbx import RandomSHA256Generator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=RandomSHA256Generator(len(my_docs)), documents=my_docs)
Document-based SHA256:
import chromadb
from chromadbx import DocumentSHA256Generator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=DocumentSHA256Generator(documents=my_docs), documents=my_docs)
import chromadb
from chromadbx import NanoIDGenerator
client = chromadb.Client()
col = client.get_or_create_collection("test")
my_docs = [f"Document {_}" for _ in range(10)]
col.add(ids=NanoIDGenerator(len(my_docs)), documents=my_docs)