-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
206 lines (163 loc) · 6.04 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
import torch
import torch.nn as nn
from scipy import stats
from torch.utils import data
import cfg
import datasets
import experiments as exp
import logger
import utils
args = cfg.parse_args()
exp_func = getattr(exp, args.experiment)
# Model
_model = cfg.get_model(
args.model_name, args.dataset, scales=args.scales, basemodel=args.basemodel_name
)
model = nn.DataParallel(_model)
model = model.cuda()
# Optimizer
optimizer = cfg.get_optimizer(model, args.optimizer, lr=args.lr)
scheduler = cfg.get_scheduler(optimizer)
# Criterion
criterion_func = cfg.get_criterion(args.criterion, cuda=True)
criterion = {'embed': criterion_func['MSE'], 'abstr': criterion_func['CE']}
loss_weights = {name: lw for name, lw in zip(exp_func.names['loss'], args.loss_weights)}
# Dataloading
val_dataset = datasets.get_cached_abstraction_dataset(
args.dataset, 'val', basemodel=args.basemodel_name
)
test_dataset = datasets.get_cached_ranking_dataset(
args.dataset, 'test', basemodel=args.basemodel_name
)
outlier_dataset = datasets.get_cached_outlier_dataset(
args.dataset, 'test', basemodel=args.basemodel_name
)
val_loader = data.DataLoader(
val_dataset, batch_size=args.batch_size, num_workers=1, pin_memory=True
)
dataset = {'val': val_dataset, 'test': test_dataset}
dataloaders = {'val': val_loader}
param_names = {
'criterion': args.criterion,
'optimizer': args.optimizer,
'loss_weights': args.loss_weights,
}
log = cfg.get_logger(args)
params = {
**vars(args),
'dataset_name': args.dataset,
'param_names': param_names,
'logger': log,
'model': model,
'_model': _model,
'optimizer': optimizer,
'loss_weights': loss_weights,
'scheduler': scheduler,
'dataset': dataset,
'dataloader': dataloaders,
'criterion': criterion,
'evaluate': True,
}
def eval_ranking(runner, test_dataset):
runner._model.eval()
runner.model.eval()
rankings = []
with torch.no_grad():
for i in range(len(test_dataset)):
try:
ref_features, rank_features = test_dataset[i]
except IndexError:
continue
ref_features = ref_features.unsqueeze(0).cuda()
rank_features = rank_features.unsqueeze(0).cuda()
ranking = runner._model.rank((ref_features, rank_features)).cpu()
rankings.append(ranking)
if i % 1000 == 0:
print(f'[{i} / {len(test_dataset)}]')
rankings = torch.cat(rankings).numpy()
gt_rankings = test_dataset.get_dists()
set_splits = {
size: len(d) for size, d in test_dataset.record_set.records_dict.items()
}
curr_idx = 0
corrs = {}
for set_size, num_videos in set_splits.items():
gtrnk = gt_rankings[curr_idx : curr_idx + num_videos]
rnk = rankings[curr_idx : curr_idx + num_videos]
curr_corr = np.mean(
[stats.spearmanr(g, r).correlation for g, r in zip(gtrnk, rnk)]
)
corrs[set_size] = curr_corr
msg = f'Avg Rank Correlation (N={set_size}): {curr_corr:0.4f}'
runner.logger.write(msg, 'summary')
curr_idx += num_videos
avg_corr = np.mean(
[stats.spearmanr(g, r).correlation for g, r in zip(gt_rankings, rankings)]
)
msg = f'Overall Avg Rank Correlation: {avg_corr}'
runner.logger.write(msg, 'summary')
def eval_outlier(runner, outlier_dataset):
meters = {
3: {
'top1': logger.AverageMeter('outlr3'),
'top2': logger.AverageMeter('outlr3'),
},
4: {
'top1': logger.AverageMeter('outlr4'),
'top2': logger.AverageMeter('outlr4'),
},
5: {
'top1': logger.AverageMeter('outlr5'),
'top2': logger.AverageMeter('outlr5'),
},
}
runner._model.eval()
runner.model.eval()
records = []
dists = []
outliers = []
with torch.no_grad():
for i in range(len(outlier_dataset)):
try:
set_features, outlr_target = outlier_dataset[i]
record = outlier_dataset.record_set[i]
except IndexError as e:
print(e)
continue
num_inputs = set_features.size(0)
set_features = set_features.unsqueeze(0).cuda()
outlr_target = outlr_target.cuda()
dist, outlr_out = runner._model.find_outlier(set_features)
records.append(record)
outliers.append(outlr_out.tolist())
dists.append(dist.tolist())
# acc1, acc2 = utils.accuracy(outlr_out, outlr_target, topk=(1, 2))
acc1, acc2 = utils.accuracy(dist, outlr_target, topk=(1, 2))
meters[num_inputs]['top1'].update(acc1.item(), 1)
meters[num_inputs]['top2'].update(acc2.item(), 1)
if i % 100 == 0:
print(
f'[{i} / {len(outlier_dataset)}]\t'
f'3Acc@1 {meters[3]["top1"].val:.3f} ({meters[3]["top1"].avg:.3f})\t'
f'3Acc@2 {meters[3]["top2"].val:.3f} ({meters[3]["top2"].avg:.3f})\t'
f'4Acc@1 {meters[4]["top1"].val:.3f} ({meters[4]["top1"].avg:.3f})\t'
f'4Acc@2 {meters[4]["top2"].val:.3f} ({meters[4]["top2"].avg:.3f})\t'
f'5Acc@1 {meters[5]["top1"].val:.3f} ({meters[5]["top1"].avg:.3f})\t'
f'5Acc@2 {meters[5]["top2"].val:.3f} ({meters[5]["top2"].avg:.3f})'
)
msg = (
f'N = 3 Acc@1 ({meters[3]["top1"].avg:.3f}) Acc@2 ({meters[3]["top2"].avg:.3f})\n'
f'N = 4 Acc@1 ({meters[4]["top1"].avg:.3f}) Acc@2 ({meters[4]["top2"].avg:.3f})\n'
f'N = 5 Acc@1 ({meters[5]["top1"].avg:.3f}) Acc@2 ({meters[5]["top2"].avg:.3f})\n'
)
runner.logger.write(msg, 'summary')
return records, dists, outliers
def eval_abstraction(runner):
runner.validate(epoch=None, evaluate=True)
return runner
if __name__ == '__main__':
runner = exp_func(**params)
eval_abstraction(runner)
eval_ranking(runner, test_dataset)
eval_outlier(runner, outlier_dataset)