-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogger.py
210 lines (182 loc) · 7.32 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
from collections import defaultdict
from utils import HTML
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix="", default_fmt=':.3f'):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
self.default_fmt = default_fmt
def display(self, batch, verbose=True):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
m = list(self.meters.values()) if isinstance(self.meters, dict) else self.meters
entries += [str(meter) for meter in m]
msg = '\t'.join(entries)
print(msg) if verbose else None
return msg
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def reset(self):
m = list(self.meters.values()) if isinstance(self.meters, dict) else self.meters
for meter in m:
meter.reset()
def __getitem__(self, key):
if key not in self.meters:
self.meters[key] = AverageMeter(key, self.default_fmt)
return self.meters[key]
class Logger(object):
parent_names = ['name', 'optimizer']
def __init__(self, log_dir='logs', output_dir='outputs', **kwargs):
self.log_dir = log_dir
self.output_dir = output_dir
self.kwargs = kwargs
def prepare(self, parent):
self.parent = parent
self.modes = list(parent.dataloader.keys())
self.parent_cls_name = os.path.join(
type(parent).__name__, '_'.join([type(parent._model).__name__])
)
self.exp_log_dir = os.path.join(self.log_dir, self.parent_cls_name)
self.output_dir = os.path.join(self.output_dir, self.parent_cls_name)
self.dlen = {mode: len(self.parent.dataloader[mode]) for mode in self.modes}
self.params = {**self.kwargs, **self.parent.params}
for name in self.parent_names:
setattr(self, name, getattr(self.parent, name))
self.logs = {}
for d in [self.exp_log_dir, self.output_dir]:
os.makedirs(d, exist_ok=True)
if self.parent.params['resume'] is None:
self.logs['main'] = open(
os.path.join(self.exp_log_dir, f'{self.name}.txt'), 'w'
)
self.logs['val'] = open(
os.path.join(self.exp_log_dir, f'{self.name}_val.txt'), 'w'
)
else:
self.logs['main'] = open(
os.path.join(self.exp_log_dir, f'{self.name}.txt'), 'a'
)
self.logs['val'] = open(
os.path.join(self.exp_log_dir, f'{self.name}_val.txt'), 'a'
)
if self.parent.params['evaluate']:
self.logs['eval'] = open(
os.path.join(self.exp_log_dir, f'{self.name}_eval.txt'), 'w'
)
self.logs['summary'] = open(
os.path.join(self.exp_log_dir, f'{self.name}_summary.txt'), 'w'
)
def open_file(self, filename):
"""Open file for plotting."""
try:
self.file.close()
except Exception:
pass
os.makedirs(os.path.dirname(filename), exist_ok=True)
self.file = open(filename, 'w')
self.file.write(HTML.head())
def write(self, out, name='main', verbose=True):
print(out) if verbose else None
out += '\n' if not out.endswith('\n') else ''
self.logs[name].write(out)
self.logs[name].flush()
def log(self, step, mode='train', epoch=None):
if mode == 'train':
out = (
'Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch,
step,
self.dlen['train'],
batch_time=self.parent.batch_time,
data_time=self.parent.data_time,
loss=self.parent.losses,
top1=self.parent.top1,
top5=self.parent.top5,
lr=self.parent.optimizer.param_groups[-1]['lr'],
)
)
self.write(out, 'main')
elif mode == 'val':
out = (
'Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
step,
self.dlen['val'],
loss=self.parent.losses,
batch_time=self.parent.batch_time,
top1=self.parent.top1,
top5=self.parent.top5,
)
)
self.write(out, 'main', verbose=False)
self.write(out, 'val')
@property
def meters(self):
return self.parent.meters
class AbstractionLogger(Logger):
def get_progress_meter(self, epoch, data_len):
meters = defaultdict(lambda k: AverageMeter(k, ':.3f'))
meters['batch_time'] = AverageMeter('Time', ':.3f')
meters['data_time'] = AverageMeter('Data', ':.3f')
for k in ['abstr', 'embed', 'full']:
meters[k] = AverageMeter(k, ':.4f')
progress = ProgressMeter(data_len, meters, prefix="Epoch: [{}]".format(epoch))
return progress
def log(self, step, mode='train', epoch=None, no_log=False):
if mode == 'train':
out = self.meters.display(step, verbose=False)
if not no_log:
self.write(out, 'main')
else:
print(out)
else:
out = self.meters.display(step, verbose=False)
if not no_log:
self.write(out, mode)
if mode != 'eval':
self.write(out, 'main', verbose=False)
else:
print(out)
def log_val(self):
msg = 'Testing Results: Loss: '
msg += self.meters.display(0)
return_metric = self.params['return_metric']
acc1 = self.meters[return_metric].avg
best = max(acc1, self.parent.best_acc1)
msg += f'\nBest {return_metric}: {best:.3f}\n'
return msg
def log_eval(self):
msg = '-----Evaluation is finished------\n'
metric_names = [n for n in self.meters.meters if n.startswith('top')]
for name in metric_names:
msg += f'{self.meters[name]}\n'
return msg