-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiments.py
334 lines (287 loc) · 11.8 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
import re
import shutil
import time
from collections import defaultdict
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm_
import utils
from utils import cache
class AbstractionEmbedding:
names = {
'loss': ['embed', 'abstr'],
'targets': ['embed', 'abstr'],
'outputs': ['embed', 'abstr'],
}
def __init__(self, **params):
self.params = params
for k, v in params.items():
setattr(self, k, v)
self.best_acc1 = 0
self.check_rootfolders()
self.load_checkpont()
self.logger.prepare(self)
cudnn.enabled = self.params['cudnn_enabled']
cudnn.benchmark = self.params['cudnn_benchmark']
self.criterion = {n: c.cuda() for n, c in self.criterion.items()}
print(f'Starting experiment: {self.name}')
def run(self):
if self.params['evaluate']:
return self.evaluate()
for epoch in range(self.params['start_epoch'], self.params['num_epochs'],):
# Train for one epoch
self.train(epoch)
# Evaluate on validation set
if (epoch + 1) % self.val_freq == 0 or epoch == self.num_epochs - 1:
meters = self.validate(epoch)
acc1 = meters[self.return_metric].avg
self.scheduler.step(meters['full'].avg)
# Remember best acc@1 and save checkpoint
is_best = acc1 > self.best_acc1
self.best_acc1 = max(acc1, self.best_acc1)
self.save_checkpoint(
{
'epoch': epoch + 1,
# 'params': self.params,
# 'arch': self.model.module.arch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_acc1': self.best_acc1,
},
is_best,
)
def train(self, epoch):
# Switch to train mode
self.model.train()
# self.meters = self.get_meters(self.__class__.__name__)
self.meters = self.logger.get_progress_meter(
epoch, len(self.dataloader['train'])
)
end = time.time()
for i, (input, target) in enumerate(self.dataloader['train']):
# Measure data loading time
self.meters['data_time'].update(time.time() - end)
# Step the experiment
self.step(input, target)
# Measure elapsed time
self.meters['batch_time'].update(time.time() - end)
end = time.time()
if i % self.params['log_freq'] == 0:
self.logger.log(i, mode='train', epoch=epoch)
if i % self.params['checkpoint_freq'] == 0:
self.save_checkpoint(
{
'epoch': epoch + 1,
# 'params': self.params,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_acc1': self.best_acc1,
},
False,
)
if self.params['max_step'] is not None:
if i % self.params['max_step'] == 0:
break
def validate(self, epoch, evaluate=False):
# Switch to evaluate mode
self.model.eval()
self.meters = self.logger.get_progress_meter(epoch, len(self.dataloader['val']))
if evaluate:
self.probs = defaultdict(list)
self.preds = defaultdict(list)
self.outputs = defaultdict(list)
self.targets = defaultdict(list)
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(self.dataloader['val']):
self.meters['data_time'].update(time.time() - end)
mode = 'eval' if evaluate else 'val'
# Step the model
self.step(input, target, mode=mode)
# Measure elapsed time
self.meters['batch_time'].update(time.time() - end)
end = time.time()
if i % self.params['log_freq'] == 0:
self.logger.log(i, mode=mode)
if self.params['max_step'] is not None:
if i % self.params['max_step'] == 0:
self.logger.write('Max steps reached!', 'main')
break
if not evaluate:
msg = self.logger.log_val()
self.logger.write(msg, 'main')
self.logger.write(msg, 'val')
else:
msg = self.logger.log_eval()
self.logger.write(msg, 'summary')
return self.meters
def step(self, input, target, mode='train'):
input = self.input_transform(input, mode=mode)
targets = self.target_transform(target, mode=mode)
# Compute output => [batch_size, out_size, num_inputs]
outputs = dict(zip(self.names['outputs'], self.model(input)))
outputs = self.output_transform(outputs, mode=mode)
# Compute loss
loss = {
name: self.loss_weights[name]
* self.criterion[name](outputs[name], targets[name])
for name in self.names['outputs']
}
loss['full'] = sum(loss.values())
for name, value in loss.items():
self.meters[name].update(value.item(), self.batch_size)
# Measure metrics
acc1, acc5 = utils.accuracy(outputs['abstr'], targets['abstr'], topk=(1, 5))
self.meters['top1@abstr'].update(acc1.item(), self.batch_size)
self.meters['top5@abstr'].update(acc5.item(), self.batch_size)
inds = {
1: (0, 4),
2: (4, 10),
3: (10, 14),
4: (14, 15),
}
inds = {k: v for k, v in inds.items() if k >= min(self.scales)}
for scale, (start_idx, stop_idx) in inds.items():
acc1, acc5 = utils.accuracy(
outputs['abstr'][..., start_idx:stop_idx],
targets['abstr'][..., start_idx:stop_idx],
topk=(1, 5),
)
self.meters[f'top1@abstr_{scale}'].update(acc1.item(), self.batch_size)
self.meters[f'top5@abstr_{scale}'].update(acc5.item(), self.batch_size)
if mode == 'train':
# Compute gradient and do SGD step
self.optimizer.zero_grad()
loss['full'].backward()
# Clip gradients
if self.params['clip_gradient'] is not None:
clip_gradient = self.params['clip_gradient']
total_norm = clip_grad_norm_(self.model.parameters(), clip_gradient)
if total_norm > clip_gradient:
print(
f'clipping gradient: {total_norm:.4f} with coef {(clip_gradient/total_norm):.4f}'
)
# Update weights
self.optimizer.step()
elif mode == 'eval':
for name in self.names['outputs']:
probs, preds = F.softmax(outputs[name], 1).sort(1, True)
self.probs[name].append(probs.detach().cpu())
self.preds[name].append(preds.detach().cpu())
self.targets[name].append(targets[name].detach().cpu())
self.outputs[name].append(outputs[name].detach().cpu())
def target_transform(self, target, mode='train'):
targets = {}
min_scale = min(self.scales)
offset = {1: 0, 2: 4, 3: 10, 4: 15}.get(min_scale)
for name, tgt in zip(self.names['targets'], target):
targets[name] = tgt.cuda(non_blocking=True)[:, offset:]
self.batch_size = tgt.size(0)
return targets
def input_transform(self, input, mode='train'):
return input
def output_transform(self, output, mode='train'):
return output
@cache
def name(self):
name = '_'.join(
map(
str,
[
self.__class__.__name__,
self.exp_id,
self.params['dataset_name'],
self.params['basemodel_name'],
'-'.join(map(str, self.param_names['loss_weights'])),
'-'.join(map(str, self.param_names['criterion'])),
'-'.join(map(str, [self.param_names['optimizer'], self.lr])),
self._model.name,
],
)
)
name = self.params['resume'] or name
name = re.sub(r'_(checkpoint|best).pth.tar$', '', name)
name = self.params['prefix'] + name.split('/')[-1]
name = type(self).__name__ + '_' + '_'.join(name.split('_')[1:])
return name
def check_rootfolders(self):
"""Create log and model folder."""
folders_util = [
self.params['log_dir'],
self.params['output_dir'],
self.params['metadata_dir'],
self.params['checkpoint_dir'],
]
for folder in folders_util:
os.makedirs(folder, exist_ok=True)
def save_name(self, save_type='EVAL', mode='val', format='torch'):
ext = {'torch': '.pth', 'pickle': '.pkl', 'npz': '.npz'}.get(format, '')
name = '_'.join(
map(
str,
[
save_type.upper(),
mode.upper(),
'-'.join(self.attrs),
'-'.join(map(str, self.set_maxmin)),
self.name,
],
)
)
return self.params['prefix'] + name + ext
def save_checkpoint(self, state, is_best, filename='checkpoint.pth.tar', freq=5):
checkpoint_dir = os.path.join(
self.params['checkpoint_dir'],
self.__class__.__name__,
'_'.join([type(self._model).__name__]),
)
# type(self._model.model).__name__]))
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_file = os.path.join(
checkpoint_dir, f'{self.name}_checkpoint.pth.tar'
)
best_file = checkpoint_file.replace('checkpoint.pth.tar', 'best.pth.tar')
epoch_file = checkpoint_file.replace(
'checkpoint.pth.tar', f'epoch_{state["epoch"]}.pth.tar'
)
# torch.save(state, checkpoint_file, pickle_protocol=4)
torch.save(state, checkpoint_file)
if is_best:
shutil.copyfile(checkpoint_file, best_file)
elif state['epoch'] % freq == 0:
shutil.copyfile(checkpoint_file, epoch_file)
def load_checkpont(self):
if self.params['resume'] is None:
self.params['checkpoint'] = None
return
file = self.params['resume']
if os.path.exists(file):
print(("=> loading checkpoint '{}'".format(file)))
checkpoint = torch.load(file)
self.params['start_epoch'] = checkpoint['epoch']
self.best_acc1 = checkpoint['best_acc1']
self.model.load_state_dict(checkpoint['state_dict'])
try:
self.optimizer.load_state_dict(checkpoint['optimizer'])
except (KeyError, AttributeError):
pass
else:
print(
(
"=> loaded checkpoint '{}' (epoch {})".format(
file, checkpoint['epoch']
)
)
)
print(f'Best Acc@1: {self.best_acc1:.3f}')
torch.cuda.empty_cache()
else:
print(("=> no checkpoint found at '{}'".format(file)))
@cache
def save_prefix(self):
return os.path.join(
self.__class__.__name__,
'_'.join([type(self._model).__name__, type(self._model.model).__name__]),
)