Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

auto reporting #3846

Merged
merged 17 commits into from
Nov 27, 2024
Merged

auto reporting #3846

merged 17 commits into from
Nov 27, 2024

Conversation

wabinyai
Copy link
Contributor

@wabinyai wabinyai commented Nov 14, 2024

WHAT DOES THIS PR DO?
This PR implements a new API endpoint for generating comprehensive air quality reports with spatial analysis.
The endpoint supports both LLaMA and Gemini models for report generation, providing detailed analysis of air quality data across specified grid locations and time periods.

Added environment variables:
ANALTICS_URL=https://platform.airqo.net/api/v2/analytics/grid/report
GOOGLE_API_KEY=
HUGGING_FACE_TOKEN=
OPENAI_API_KEY=
To test the code, please have GOOGLE_API_KEY https://ai.google.dev/gemini-api

[Provide a brief description of the changes made in this PR]
There are 3 API to test

  • http://127.0.0.1:5000/api/v2/spatial/air_quality_report
{
    "grid_id": "654230870a765d0013ec2bbd",
    "start_time": "2024-01-01T00:00",
    "end_time": "2024-01-27T00:00",
    "audience":"general public"
}

This uses gemini LLM , there are three types of audience
general public, policymaker, and researcher

  • http://127.0.0.1:5000/api/v2/spatial/air_quality_report_without_llm
    This uses rule base
{
    "grid_id": "654229088f9ef500139a24d8",
    "start_time": "2024-01-01T00:00",
    "end_time": "2024-01-27T00:00" 
} 
  • http://127.0.0.1:5000/api/v2/spatial/air_quality_report_with_customised_prompt
{
    "grid_id": "654229088f9ef500139a24d8",
    "start_time": "2024-01-01T00:00",
    "end_time": "2024-01-27T00:00",
    "customise_prompt":"what are top 3 most poluted sites and the pm2.5 value"
}

This API uses gemini to act as a chat tool

WHAT ISSUES ARE RELATED TO THIS PR?

  • Jira cards
    • []
  • GitHub issues
    • Closes #

HOW DO I TEST OUT THIS PR?

WHICH ENDPOINTS SHOULD BE READY FOR TESTING?:

  • Endpoint 1
  • Endpoint 2

ARE THERE ANY RELATED PRs?

  • Related PR 1
  • Related PR 2

Summary by CodeRabbit

Release Notes

  • New Features

    • Introduced new API keys configuration for Analytics, Hugging Face, Google, and OpenAI.
    • Added three new endpoints for generating air quality reports, enhancing user access to report generation.
    • Implemented a data fetching class to retrieve and process air quality data from external APIs.
    • Created a report generation class that produces tailored reports for researchers, policymakers, and the general public.
  • Dependencies

    • Updated project dependencies to include libraries for machine learning and natural language processing, including torch, transformers, and openai.

**_WHAT DOES THIS PR DO?_**
This PR implements a new API endpoint for generating comprehensive air quality reports with spatial analysis.
- [ ] Item 1
- [ ] Item 2

**_WHAT ISSUES ARE RELATED TO THIS PR?_**

- Jira cards
    - []
- GitHub issues
    - Closes #<enter GitHub issue number here>

**_HOW DO I TEST OUT THIS PR?_**

- [ ] Analytics: [Link to Analytics README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/analytics#readme)
- [ ] Auth Service: [Link to Auth Service README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/auth-service#readme)
- [ ] Calibrate: [Link to Calibrate README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/calibrate#readme)
- [ ] Data Proxy: [Link to Data Proxy README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/data-proxy#readme)
- [ ] Device Monitoring: [Link to Device Monitoring README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/device-monitoring#readme)
- [ ] Device Registry: [Link to Device Registry README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/device-registry#readme)
- [ ] Device Status: [Link to Device Status README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/device-status#readme)
- [ ] Device Uptime: [Link to Device Uptime README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/device-uptime#readme)
- [ ] Exceedances: [Link to Exceedances README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/exceedances#readme)
- [ ] Firebase: [Link to Firebase README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/firebase)
- [ ] GP Model: [Link to GP Model README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/gp-model#readme)
- [ ] Incentives: [Link to Incentives README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/incentives#readme)
- [ ] Kafka Connectors: [Link to Kafka Connectors](https://github.com/airqo-platform/AirQo-api/tree/staging/src/kafka-connectors)
- [ ] Locate: [Link to Locate README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/locate#readme)
- [ ] Metadata: [Link to Metadata README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/meta-data#readme)
- [ ] Predict: [Link to Predict README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/predict#readme)
- [ ] Spatial: [Link to Spatial](https://github.com/airqo-platform/AirQo-api/tree/staging/src/spatial)
- [ ] View: [Link to View README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/view#readme)
- [ ] Workflows: [Link to Workflows README](https://github.com/airqo-platform/AirQo-api/tree/staging/src/workflows#readme)

**_WHICH ENDPOINTS SHOULD BE READY FOR TESTING?:_**

- [ ] Endpoint 1
- [ ] Endpoint 2

**_ARE THERE ANY RELATED PRs?_**

- [ ] Related PR 1
- [ ] Related PR 2
Copy link
Contributor

coderabbitai bot commented Nov 14, 2024

📝 Walkthrough

Walkthrough

The changes introduced in this pull request expand the application's configuration and functionality. New environment variables are added to the Config class, enabling the use of API tokens for Hugging Face, Google, and OpenAI. A new Flask route for generating air quality reports is established, along with the introduction of a DataFetcher class for retrieving air quality data and an AirQualityReport class for report generation. Additionally, the requirements.txt file is updated to include necessary dependencies for machine learning and natural language processing.

Changes

File Change Summary
src/spatial/configure.py Added environment variables: ANALTICS_URL, HUGGING_FACE_TOKEN, GOOGLE_API_KEY, OPENAI_API_KEY.
src/spatial/controllers/controllers.py Added new routes for air quality reports: /air_quality_report, /air_quality_report_without_llm, and /air_quality_report_with_customised_prompt. Included methods from ReportView.
src/spatial/models/report_datafetcher.py Introduced DataFetcher class for fetching air quality data and AirQualityReport class for processing and generating reports; multiple methods added for report generation.
src/spatial/requirements.txt Updated numpy dependency and added new dependencies: torch, transformers, datasets, sentencepiece, huggingface_hub, google-generativeai, openai.
src/spatial/views/report_view.py Added ReportView class with methods for validating requests and generating air quality reports.

Possibly related PRs

Suggested reviewers

  • Baalmart
  • Mnoble-19
  • Codebmk
  • BenjaminSsempala

🌟 In the realm of code, new paths we pave,
With tokens and routes, our project we save.
From air quality data, reports we shall weave,
With models and methods, in tech we believe!
So here's to the changes, both big and small,
Together we rise, united we stand tall! 🎉


Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Copy link

codecov bot commented Nov 14, 2024

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 11.47%. Comparing base (716893d) to head (e6544e0).
Report is 464 commits behind head on staging.

Additional details and impacted files

Impacted file tree graph

@@             Coverage Diff             @@
##           staging    #3846      +/-   ##
===========================================
- Coverage    11.77%   11.47%   -0.31%     
===========================================
  Files          114      115       +1     
  Lines        15205    16795    +1590     
  Branches       274      343      +69     
===========================================
+ Hits          1791     1927     +136     
- Misses       13414    14868    +1454     

see 32 files with indirect coverage changes

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 11

🧹 Outside diff range and nitpick comments (6)
src/spatial/requirements.txt (1)

26-31: Consider security implications of ML model downloads

The addition of huggingface_hub and transformers enables downloading and running external ML models. This introduces potential security risks if not properly managed.

Recommendations:

  1. Implement model validation before loading
  2. Consider using model allow-lists
  3. Set up proper access controls for model downloads
  4. Monitor model download and usage patterns

Would you like assistance in implementing these security measures?

src/spatial/views/report_view.py (2)

1-3: Consider enhancing error handling and logging capabilities

The current implementation could benefit from more robust error handling and proper logging:

  1. Consider importing Flask's error handling utilities
  2. Replace print statements with proper logging
 from flask import request, jsonify
+from flask import current_app
+import logging
 from models.report_datafetcher import DataFetcher, AirQualityReport

27-34: Implement configuration-based report generation strategy

The multiple commented implementations suggest an architectural need for a strategy pattern to handle different report generation methods.

Consider implementing a factory pattern for report generation:

class ReportGeneratorFactory:
    @staticmethod
    def create_generator(strategy: str = "default"):
        strategies = {
            "default": lambda r, a: r.generate_report_without_llm(),
            "gemini": lambda r, a: r.generate_report_with_gemini(a),
            "openai": lambda r, a: r.generate_report_with_openai(a),
            "template": lambda r, a: r.generate_report_template_witout_LLM(a)
        }
        return strategies.get(strategy, strategies["default"])

# Usage in the view:
generator = ReportGeneratorFactory.create_generator(
    current_app.config.get("REPORT_GENERATOR_STRATEGY", "default")
)
json_report = generator(report, audience)
src/spatial/configure.py (1)

28-30: Document the purpose and required format of new API tokens.

To assist other developers, please add comments explaining:

  • The purpose of each token
  • Required format/length
  • Any rate limiting considerations
  • Links to documentation for obtaining these tokens

Example documentation format:

+    # Hugging Face API token for accessing ML models
+    # Format: hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+    # Docs: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
     HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
src/spatial/models/report_datafetcher.py (2)

17-17: Use the logging module instead of print statements for better logging practices.

To maintain consistent logging and allow better control over log levels, consider replacing print statements with the logging module.

Apply this diff to modify the print statement:

-        print("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")
+        logging.warning("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")

Don't forget to import the logging module at the top of your file:

import logging

181-192: Fix grammatical and typographical errors in the conclusion section.

Several grammatical and typographical errors in the conclusion string may affect the readability of the generated reports.

Apply this diff to correct the errors:

                f"It’s observed that these fluctuations may be influenced by various factors, including seasonal changes. For instance, the washout effect during the rainy"
-               f" season could potentially contribute to these variations. Specifically, for the period from   {self.starttime} to {self.endtime},"
+               f" season could potentially contribute to these variations. Specifically, for the period from {self.starttime} to {self.endtime},"
-               f" the PM2.5 raw values ranged from {self.daily_min_pm2_5['pm2_5_raw_value']} µg/m³ on {self.daily_min_pm2_5['date']} to {self.daily_max_pm2_5['pm2_5_raw_value']} µg/m³ on {self.daily_max_pm2_5['date']}. respectively."
+               f" the PM2.5 raw values ranged from {self.daily_min_pm2_5['pm2_5_raw_value']} µg/m³ on {self.daily_min_pm2_5['date']} to {self.daily_max_pm2_5['pm2_5_raw_value']} µg/m³ on {self.daily_max_pm2_5['date']}, respectively."
                f"This pattern underscores the importance of continuous monitoring and the implementation of"
-               f"effective interventions to maintain air quality within safe limits. Ensuring good air quality is crucial for "
+               f" effective interventions to maintain air quality within safe limits. Ensuring good air quality is crucial for "
-               f"the well-being of both residents and visitors. Therefore, it’s imperative to adopt long-term"
-               f"strategies and measures that can effectively mitigate the impact of factors leading to poor airquality."
+               f" the well-being of both residents and visitors. Therefore, it’s imperative to adopt long-term "
+               f" strategies and measures that can effectively mitigate the impact of factors leading to poor air quality."
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between 716893d and ae73677.

📒 Files selected for processing (5)
  • src/spatial/configure.py (1 hunks)
  • src/spatial/controllers/controllers.py (2 hunks)
  • src/spatial/models/report_datafetcher.py (1 hunks)
  • src/spatial/requirements.txt (1 hunks)
  • src/spatial/views/report_view.py (1 hunks)
🧰 Additional context used
🪛 Ruff
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)

🔇 Additional comments (5)
src/spatial/requirements.txt (1)

26-31: Verify compatibility between ML dependencies

The combination of torch, transformers, and other ML libraries needs careful version alignment.

src/spatial/controllers/controllers.py (2)

15-15: LGTM! Clean import statement.

The import follows the established pattern and is appropriately placed with other view imports.


71-73: ⚠️ Potential issue

Several improvements needed for the new endpoint implementation.

  1. The function name fetch_air_quality doesn't accurately reflect its purpose of generating a report. Consider renaming it to generate_air_quality_report for consistency.

  2. The implementation lacks request validation and error handling, which are present in other endpoints.

Consider implementing this more robust version:

@controller_bp.route("/air_quality_report", methods=["POST"])
-def fetch_air_quality():
-    return ReportView.generate_air_quality_report()
+def generate_air_quality_report():
+    try:
+        data = request.get_json()
+        required_fields = ['grid_id', 'start_time', 'end_time', 'audience']
+        
+        if not data:
+            return jsonify({"error": "No input data provided"}), 400
+            
+        for field in required_fields:
+            if field not in data:
+                return jsonify({"error": f"Missing required field: {field}"}), 400
+                
+        return ReportView.generate_air_quality_report()
+    except Exception as e:
+        return jsonify({"error": str(e)}), 500
  1. Please add docstring documentation for the endpoint:
"""Generate an air quality report based on provided parameters.

Expected POST body:
{
    "grid_id": string,
    "start_time": string (ISO format),
    "end_time": string (ISO format),
    "audience": string
}

Returns:
    JSON response containing the generated report
"""

Let's verify the consistency of error handling across other endpoints:

src/spatial/configure.py (2)

28-30: Verify error handling for missing tokens.

Since these tokens are crucial for the air quality reporting feature, we should ensure proper error handling when they're missing.

Let's check if there's error handling for missing tokens:

#!/bin/bash
# Look for error handling related to these environment variables
rg -A 5 "HUGGING_FACE_TOKEN|GOOGLE_API_KEY|OPENAI_API_KEY" --type py

28-30: Consider enhancing security measures for API tokens.

While the implementation follows the existing pattern, these new API tokens (Hugging Face, Google, OpenAI) are particularly sensitive as they can incur usage costs and potentially expose ML/AI capabilities. Consider:

  1. Adding validation to ensure these tokens are properly formatted
  2. Implementing token masking in logs
  3. Adding rate limiting mechanisms

Let's verify the environment variable documentation:

✅ Verification successful

The previous output revealed usage of these tokens but we need to verify:

  1. Documentation of these environment variables
  2. Any existing validation/masking patterns
  3. How these tokens are handled in logs

This will help us provide specific recommendations about security measures.


API tokens are properly configured with basic security measures

The code review concern about API token security has been verified and appears to be properly implemented with basic security measures:

  1. The tokens are loaded from environment variables, which is a security best practice
  2. The tokens are used in a controlled manner through a configuration class
  3. The tokens are used with proper authorization headers when making API requests
  4. There is error handling and logging around token usage
  5. The tokens are not exposed in logs or error messages

The implementation follows standard security patterns for handling API tokens. While additional security measures like token validation and rate limiting could be added as suggested in the review, the current implementation provides a reasonable baseline level of security.

🏁 Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Check if these new variables are documented in README or .env.example files
fd -t f "README.md|.env.example" -x grep -l "HUGGING_FACE_TOKEN\|GOOGLE_API_KEY\|OPENAI_API_KEY" {}

Length of output: 2088


Script:

#!/bin/bash
# Check for .env.example and documentation files in the root and common locations
fd -t f "(.env.example|.env.sample|README|SETUP|INSTALL|CONFIGURATION)\.(md|txt)" -x cat {}

# Check for any existing validation or masking of these tokens
ast-grep --pattern 'if $TOKEN: 
  $$$
else:
  $$$' --lang python

# Look for any logging related to these tokens
rg "log|print.*TOKEN|KEY" --type py

Length of output: 367795

Comment on lines 26 to 31
transformers
datasets
sentencepiece
huggingface_hub
google-generativeai
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Add version constraints for new ML/NLP dependencies

For security and reproducibility, it's important to pin versions for ML/NLP dependencies. This is especially crucial for libraries that download and execute models or make API calls.

Apply this diff to add version constraints:

-torch
-transformers
-datasets
-sentencepiece
-huggingface_hub
-google-generativeai
+torch~=2.2.1
+transformers~=4.38.2
+datasets~=2.18.0
+sentencepiece~=0.1.99
+huggingface_hub~=0.21.4
+google-generativeai~=0.3.2
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
torch
transformers
datasets
sentencepiece
huggingface_hub
google-generativeai
torch~=2.2.1
transformers~=4.38.2
datasets~=2.18.0
sentencepiece~=0.1.99
huggingface_hub~=0.21.4
google-generativeai~=0.3.2

Comment on lines 10 to 15
# Extract data from the request
data = request.json
grid_id = data.get("grid_id")
start_time = data.get("start_time")
end_time = data.get("end_time")
audience = data.get("audience", "general public") # Default to "general public" if audience is not provided
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Add input validation and sanitization

The current implementation lacks:

  1. Type validation for inputs
  2. Date format validation
  3. Input sanitization
  4. Grid ID format validation

Consider implementing a validation function:

def validate_report_params(grid_id, start_time, end_time, audience):
    """Validate and sanitize report parameters."""
    try:
        # Validate grid_id format
        if not isinstance(grid_id, str) or not grid_id.strip():
            return False, "Invalid grid_id format"
            
        # Validate and parse dates
        from datetime import datetime
        try:
            start = datetime.fromisoformat(start_time)
            end = datetime.fromisoformat(end_time)
            if end <= start:
                return False, "end_time must be after start_time"
        except ValueError:
            return False, "Invalid date format. Use ISO format"
            
        # Validate audience
        valid_audiences = {"general public", "technical", "policy makers"}
        if audience.lower() not in valid_audiences:
            return False, f"audience must be one of: {valid_audiences}"
            
        return True, None
    except Exception as e:
        return False, str(e)

Comment on lines 17 to 19
# Validate input parameters
if not all([grid_id, start_time, end_time, audience]):
return jsonify({"error": "Missing required parameters: grid_id, start_time, end_time, audience"}), 400
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Enhance error message specificity

The current error handling doesn't specify which parameters are missing. This makes debugging harder for API consumers.

-        if not all([grid_id, start_time, end_time, audience]):
-            return jsonify({"error": "Missing required parameters: grid_id, start_time, end_time, audience"}), 400
+        missing_params = []
+        if not grid_id: missing_params.append("grid_id")
+        if not start_time: missing_params.append("start_time")
+        if not end_time: missing_params.append("end_time")
+        if not audience: missing_params.append("audience")
+        
+        if missing_params:
+            return jsonify({
+                "error": "Missing required parameters",
+                "missing_parameters": missing_params
+            }), 400
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
# Validate input parameters
if not all([grid_id, start_time, end_time, audience]):
return jsonify({"error": "Missing required parameters: grid_id, start_time, end_time, audience"}), 400
# Validate input parameters
missing_params = []
if not grid_id: missing_params.append("grid_id")
if not start_time: missing_params.append("start_time")
if not end_time: missing_params.append("end_time")
if not audience: missing_params.append("audience")
if missing_params:
return jsonify({
"error": "Missing required parameters",
"missing_parameters": missing_params
}), 400

Comment on lines 37 to 40
if json_report is None:
return jsonify({"error": "Failed to generate report"}), 500

return jsonify({"report": json_report}), 200
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Enhance error handling and add logging for failures

The error handling for report generation failures could be more informative and include logging.

         if json_report is None:
+            current_app.logger.error(
+                f"Failed to generate report for grid_id: {grid_id}, "
+                f"period: {start_time} to {end_time}"
+            )
             return jsonify({"error": "Failed to generate report"}), 500

+        current_app.logger.info(
+            f"Successfully generated report for grid_id: {grid_id}, "
+            f"period: {start_time} to {end_time}"
+        )
         return jsonify({"report": json_report}), 200

Committable suggestion skipped: line range outside the PR's diff.

Comment on lines 5 to 8
@staticmethod
def generate_air_quality_report():
"""Fetch air quality data and generate a report based on grid_id, start_time, end_time, and audience."""
print('Processing request to generate air quality report...')
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Enhance method documentation and logging

The docstring should include:

  • Parameter descriptions
  • Return type information
  • HTTP status codes
  • Example usage

Also, replace the print statement with proper logging.

     @staticmethod
     def generate_air_quality_report():
-        """Fetch air quality data and generate a report based on grid_id, start_time, end_time, and audience."""
-        print('Processing request to generate air quality report...')
+        """Generate an air quality report for a specific grid and time range.
+
+        Parameters:
+            grid_id (str): The identifier for the geographic grid
+            start_time (str): ISO format start time
+            end_time (str): ISO format end time
+            audience (str, optional): Target audience for the report. Defaults to "general public"
+
+        Returns:
+            tuple: (JSON response, HTTP status code)
+
+        Status Codes:
+            200: Success
+            400: Missing parameters
+            404: No data found
+            500: Report generation failed
+        """
+        current_app.logger.info('Processing request to generate air quality report...')

Committable suggestion skipped: line range outside the PR's diff.

Comment on lines 21 to 25
# Fetch air quality data
air_quality_data = DataFetcher.fetch_air_quality_data_a(grid_id, start_time, end_time)

if air_quality_data is None:
return jsonify({"error": "No data found for the given parameters"}), 404
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💡 Codebase verification

🛠️ Refactor suggestion

Improve error handling and logging in both DataFetcher and report_view

The verification reveals several issues that validate the original review:

  1. DataFetcher uses print statements instead of proper logging
  2. Exceptions are swallowed and converted to None returns
  3. No timeout configuration for the HTTP request
  4. The '_a' suffix appears to be a legacy naming as no alternative implementations exist
# In src/spatial/models/report_datafetcher.py
class DataFetcher:
    @staticmethod
    def fetch_air_quality_data_a(grid_id, start_time, end_time):
        token = Config.AIRQO_API_TOKEN  
        if token is None:
-           print("Error: AIRQO_API_TOKEN environment variable is not set.")
-           return None
+           raise ValueError("AIRQO_API_TOKEN environment variable is not set")

        url = f"https://platform.airqo.net/api/v2/analytics/grid/report?token={token}"
        payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}

        try:
-           response = requests.post(url, json=payload)
+           response = requests.post(url, json=payload, timeout=30)
            response.raise_for_status()
            return response.json()
        except requests.exceptions.HTTPError as http_err:
-           print(f"HTTP error occurred: {http_err}")
+           raise RuntimeError(f"HTTP error occurred: {http_err}")
        except requests.exceptions.RequestException as req_err:
-           print(f"Request error occurred: {req_err}")
+           raise RuntimeError(f"Request error occurred: {req_err}")
        except ValueError as json_err:
-           print(f"JSON decoding error: {json_err}")
+           raise RuntimeError(f"JSON decoding error: {json_err}")
-       return None

The original review comment's suggestion for error handling in report_view.py remains valid and should be implemented alongside these DataFetcher changes.

🔗 Analysis chain

Improve error handling and verify DataFetcher implementation

The current implementation has several concerns:

  1. The method name fetch_air_quality_data_a suggests multiple implementations
  2. No timeout handling
  3. Limited error information from DataFetcher
         # Fetch air quality data
+        try:
+            air_quality_data = DataFetcher.fetch_air_quality_data_a(
+                grid_id, start_time, end_time
+            )
+        except Exception as e:
+            current_app.logger.error(f"Error fetching data: {str(e)}")
+            return jsonify({
+                "error": "Failed to fetch air quality data",
+                "details": str(e)
+            }), 500
-        air_quality_data = DataFetcher.fetch_air_quality_data_a(grid_id, start_time, end_time)

         if air_quality_data is None:
+            current_app.logger.warning(
+                f"No data found for grid_id: {grid_id}, "
+                f"period: {start_time} to {end_time}"
+            )
             return jsonify({"error": "No data found for the given parameters"}), 404

Let me gather more information about the error handling in DataFetcher.

This will help us understand:

  1. The complete implementation of the fetch method
  2. Any other fetch methods that might exist
  3. How requests and timeouts are handled in the DataFetcher
🏁 Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Search for other fetch implementations and their usage
ast-grep --pattern 'fetch_air_quality_data_$_'

# Look for DataFetcher implementation
rg -A 10 'class DataFetcher'

Length of output: 976


Script:

#!/bin/bash
# Look for the complete implementation of fetch_air_quality_data_a
rg -A 20 'def fetch_air_quality_data_a'

# Check if there are any other fetch methods in DataFetcher
rg -A 5 'def fetch' src/spatial/models/report_datafetcher.py

# Look for any request handling or timeout configurations
rg -A 5 'requests\.' src/spatial/models/report_datafetcher.py

Length of output: 2639

base_info = self._prepare_base_info()
if audience == "researcher":
return (
f"{audience}"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Remove unnecessary inclusion of audience in the prompts.

In the _generate_prompt method, the lines f"{audience}" may unintentionally insert the audience type into the generated prompts. This could lead to confusing or redundant content in the reports.

Apply this diff to remove the redundant lines:

            if audience == "researcher":
-                return (
-                    f"{audience}"
                    f"Generate a comprehensive air quality assessment report for {self.grid_name} for the period of {self.starttime} to {self.endtime}. Begin with ..."
                    ...

            elif audience == "policymaker":
-                return (
-                    f"{audience}"
                    f"Create an executive summary of air quality conditions in {self.grid_name} for the period of {self.starttime} to {self.endtime} for policy decision-making. Begin with ..."
                    ...

            elif audience == "general public":
-                return (
-                    f"{audience}"
                    f"{base_info} include the period under review."
                    f"Create a clear, easy-to-understand report about air quality in {self.grid_name} for the period of {self.starttime} to {self.endtime}. Start with ..."
                    ...

Also applies to: 97-97, 107-107

src/spatial/models/report_datafetcher.py Outdated Show resolved Hide resolved
return self._prepare_report_json(openai_output)

# Use non-LLM template text as report content
def generate_report_template_witout_LLM(self, audience):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Correct the typo in the method name generate_report_template_witout_LLM.

There's a typo in the method name generate_report_template_witout_LLM; it should be generate_report_template_without_LLM.

Apply this diff to fix the method name:

-        def generate_report_template_witout_LLM(self, audience):
+        def generate_report_template_without_LLM(self, audience):

Make sure to update any calls to this method accordingly.

📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def generate_report_template_witout_LLM(self, audience):
def generate_report_template_without_LLM(self, audience):

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

🧹 Outside diff range and nitpick comments (2)
src/spatial/views/report_view.py (2)

7-9: Enhance method documentation

The docstring should include:

  • Parameter descriptions
  • Return type information
  • HTTP status codes
  • Example usage
-    """Fetch air quality data and generate a report based on grid_id, start_time, end_time, and audience."""
+    """Generate an air quality report for the specified parameters.
+
+    Parameters:
+        grid_id (str): The identifier for the geographic grid
+        start_time (str): ISO format start time
+        end_time (str): ISO format end time
+        audience (str, optional): Target audience for the report. Defaults to "general public"
+
+    Returns:
+        tuple: (JSON response, HTTP status code)
+            200: Success with report data
+            400: Invalid or missing parameters
+            404: No data found
+            500: Internal error or report generation failed
+
+    Example:
+        POST /air_quality_report
+        {
+            "grid_id": "123",
+            "start_time": "2024-01-01T00:00:00",
+            "end_time": "2024-01-02T00:00:00",
+            "audience": "technical"
+        }
+    """

66-71: Clarify the report generation strategy

The code shows multiple commented implementation options but only uses generate_report_without_llm(). Consider:

  1. Documenting why this implementation was chosen
  2. Adding a TODO if other implementations are planned
  3. Removing commented code if alternatives are not planned
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between ae73677 and 780463a.

📒 Files selected for processing (1)
  • src/spatial/views/report_view.py (1 hunks)
🧰 Additional context used
🪛 Ruff
src/spatial/views/report_view.py

37-37: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


57-57: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


73-73: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

🔇 Additional comments (2)
src/spatial/views/report_view.py (2)

1-5: LGTM! Clean imports and proper logging setup.

The imports are well-organized and the use of the logging module follows best practices.


11-14: Input validation and sanitization still needed

The previous review comment about adding comprehensive input validation remains valid. This includes:

  1. Type validation for inputs
  2. Date format validation
  3. Input sanitization
  4. Grid ID format validation

Comment on lines 73 to 75
except Exception as e:
logging.exception("Error generating the report.")
return None
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Enhance error handling in report generation

Include error details in the logging and consider returning structured error information instead of None.

         except Exception as e:
             logging.exception("Error generating the report.")
-            return None
+            return {
+                "error": "Report generation failed",
+                "details": str(e)
+            }
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
except Exception as e:
logging.exception("Error generating the report.")
return None
except Exception as e:
logging.exception("Error generating the report.")
return {
"error": "Report generation failed",
"details": str(e)
}
🧰 Tools
🪛 Ruff

73-73: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

Comment on lines 37 to 39
except Exception as e:
logging.exception("Unexpected error occurred during report generation")
return jsonify({"error": "An unexpected error occurred"}), 500
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Include error details in the 500 response

The caught exception details should be included in the error response for better debugging.

         except Exception as e:
             logging.exception("Unexpected error occurred during report generation")
-            return jsonify({"error": "An unexpected error occurred"}), 500
+            return jsonify({
+                "error": "An unexpected error occurred",
+                "details": str(e)
+            }), 500
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
except Exception as e:
logging.exception("Unexpected error occurred during report generation")
return jsonify({"error": "An unexpected error occurred"}), 500
except Exception as e:
logging.exception("Unexpected error occurred during report generation")
return jsonify({
"error": "An unexpected error occurred",
"details": str(e)
}), 500
🧰 Tools
🪛 Ruff

37-37: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

Comment on lines 57 to 59
except Exception as e:
logging.exception("Error parsing input data.")
return {"error": "Error parsing input data."}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Include parsing error details in the response

Include the actual error message for better debugging.

         except Exception as e:
             logging.exception("Error parsing input data.")
-            return {"error": "Error parsing input data."}
+            return {
+                "error": "Error parsing input data.",
+                "details": str(e)
+            }
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
except Exception as e:
logging.exception("Error parsing input data.")
return {"error": "Error parsing input data."}
except Exception as e:
logging.exception("Error parsing input data.")
return {
"error": "Error parsing input data.",
"details": str(e)
}
🧰 Tools
🪛 Ruff

57-57: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

Copy link
Contributor

Spatial changes in this PR available for preview here

@wabinyai wabinyai requested a review from uman95 November 14, 2024 11:25
Copy link
Contributor

@Baalmart Baalmart left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks @wabinyai , I have just left one small (minor) comment. Also:

  1. Please let me (us) know if you have any new ENVs that need to be added.
  2. Also, please let me (us) know when this PR is ready for merging.

Thanks again.

print("Error: AIRQO_API_TOKEN environment variable is not set.")
return None

url = f"https://platform.airqo.net/api/v2/analytics/grid/report?token={token}"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@wabinyai , is it possible to have this URL (or a section of it) as an environmental variable? Thanks for the great work.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Baalmart I am still doing some extra work on it.
The environment needed are HUGGING_FACE_TOKEN GOOGLE_API_KEY OPENAI_API_KEY
We are still exploring other free LLM that can do as well as gemini

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

🧹 Outside diff range and nitpick comments (2)
src/spatial/models/report_datafetcher.py (2)

83-115: Reduce code duplication in prompt generation.

The _generate_prompt method contains duplicated text patterns and could be simplified using template strings.

Consider this improvement:

+    _PROMPT_TEMPLATES = {
+        "researcher": """
+            Generate a comprehensive air quality assessment report for {grid_name} for the period of {starttime} to {endtime}.
+            Begin with a detailed introduction (100-130 words) covering the city's geographical location, climate characteristics,
+            population density, and major pollution sources.
+            {base_info}
+            Daily mean measurements show: {daily_mean_data}.
+            Diurnal patterns indicate: {diurnal}. Monthly trends reveal: {monthly_data}.
+            Provide a thorough analysis of spatial and temporal air quality variations, identify pollution hotspots and clean zones,
+            examine seasonal patterns, and assess compliance with WHO guidelines.
+            Conclude with actionable recommendations for air quality improvement and public health protection.
+            Data source: AirQo monitoring network.
+        """,
+        "policymaker": """...""",  # Similar template for policymaker
+        "general public": """..."""  # Similar template for general public
+    }
+
     def _generate_prompt(self, audience):
         base_info = self._prepare_base_info()
-        if audience == "researcher":
-            return (   
-                f"Generate a comprehensive air quality assessment report..."
-            )
-        elif audience == "policymaker":
-            return (
-                f"Create an executive summary..."
-            )
-        elif audience == "general public":
-            return ( 
-                f"Create a clear, easy-to-understand report..."
-            )
-        else:
+        if audience not in self._PROMPT_TEMPLATES:
             raise ValueError("Invalid audience type. Please specify 'researcher', 'policymaker', or 'general public'.")
+        
+        template = self._PROMPT_TEMPLATES[audience]
+        return template.format(
+            grid_name=self.grid_name,
+            starttime=self.starttime,
+            endtime=self.endtime,
+            base_info=base_info,
+            daily_mean_data=self.daily_mean_data,
+            diurnal=self.diurnal,
+            monthly_data=self.monthly_data
+        )

202-211: Add schema validation to JSON preparation.

The _prepare_report_json method returns raw data without validation, which could lead to inconsistent output formats.

Consider using Pydantic for schema validation:

+from pydantic import BaseModel, Field
+from typing import List, Dict, Any
+
+class AirQualityReportSchema(BaseModel):
+    grid_name: str
+    main_site: str
+    annual_data: Dict[str, Any]
+    daily_mean_data: List[Dict[str, Any]]
+    diurnal: List[Dict[str, Any]]
+    monthly_data: List[Dict[str, Any]]
+    report: str
+
     def _prepare_report_json(self, report_content):
-        return {
+        data = {
             "grid_name": self.grid_name,
             "main_site": self.main_site, 
             "annual_data": self.annual_data,
             "daily_mean_data": self.daily_mean_data,
             "diurnal": self.diurnal,
             "monthly_data": self.monthly_data,
             "report": report_content
         }
+        return AirQualityReportSchema(**data).dict()
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between 2fd6d90 and ac0bcae.

📒 Files selected for processing (2)
  • src/spatial/models/report_datafetcher.py (1 hunks)
  • src/spatial/views/report_view.py (1 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • src/spatial/views/report_view.py
🧰 Additional context used
🪛 Ruff
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)

Comment on lines 27 to 28
url = f"https://platform.airqo.net/api/v2/analytics/grid/report?token={token}"
payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Security: Remove token from URL query parameters.

Including sensitive tokens in URLs is a security risk as they can be logged in server logs or exposed in browser history.

Apply this diff to move the token to headers:

-        url = f"https://platform.airqo.net/api/v2/analytics/grid/report?token={token}"
-        payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
+        url = "https://platform.airqo.net/api/v2/analytics/grid/report"
+        headers = {"Authorization": f"Bearer {token}"}
+        payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}

Update the request to use headers:

-            response = requests.post(url, json=payload)
+            response = requests.post(url, headers=headers, json=payload)

Committable suggestion skipped: line range outside the PR's diff.

Copy link
Contributor

Spatial changes in this PR available for preview here

1 similar comment
Copy link
Contributor

Spatial changes in this PR available for preview here

Copy link
Contributor

Spatial changes in this PR available for preview here

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 7

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between e8b5760 and 7bdb63e.

📒 Files selected for processing (2)
  • src/spatial/configure.py (1 hunks)
  • src/spatial/models/report_datafetcher.py (1 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • src/spatial/configure.py
🧰 Additional context used
🪛 Ruff
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)

🔇 Additional comments (2)
src/spatial/models/report_datafetcher.py (2)

135-135: ⚠️ Potential issue

Correct the typo in the method name generate_report_template_witout_LLM.

There's a typo in the method name; it should be generate_report_template_without_LLM.

Apply this diff to fix the method name:

-    def generate_report_template_witout_LLM(self, audience):
+    def generate_report_template_without_LLM(self, audience):

Remember to update any references to this method in your codebase.

Likely invalid or redundant comment.


35-42: 🛠️ Refactor suggestion

Enhance exception handling and logging in data fetching.

Currently, exceptions are caught but only printed to the console, which may not be effective in a production environment. Consider using the logging module for better logging practices and re-raise exceptions if necessary.

Apply this diff to improve error handling:

+    import logging
+
     try:
         response = requests.post(url, headers=headers, json=payload)
         response.raise_for_status()
         return response.json()
     except requests.exceptions.HTTPError as http_err:
-        print(f"HTTP error occurred: {http_err}")
+        logging.error(f"HTTP error occurred: {http_err}")
     except requests.exceptions.RequestException as req_err:
-        print(f"Request error occurred: {req_err}")
+        logging.error(f"Request error occurred: {req_err}")
     except ValueError as json_err:
-        print(f"JSON decoding error: {json_err}")
+        logging.error(f"JSON decoding error: {json_err}")

Consider whether the method should return None or if it should raise an exception to be handled by the caller.

Likely invalid or redundant comment.

Copy link
Contributor

Spatial changes in this PR available for preview here

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

🧹 Outside diff range and nitpick comments (1)
src/spatial/views/report_view.py (1)

1-4: Add type hints and logging capabilities

Consider enhancing the code with:

  1. Type hints for better code maintainability
  2. Logging import for proper error tracking
+import logging
 from flask import request, jsonify
-from models.report_datafetcher import DataFetcher, AirQualityReport
+from models.report_datafetcher import DataFetcher, AirQualityReport
+from typing import Tuple, Dict, Any, Optional
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between 7bdb63e and 9d8d3ab.

📒 Files selected for processing (2)
  • src/spatial/controllers/controllers.py (2 hunks)
  • src/spatial/views/report_view.py (1 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • src/spatial/controllers/controllers.py
🧰 Additional context used
🪛 GitHub Check: CodeQL
src/spatial/views/report_view.py

[warning] 30-32: Information exposure through an exception
Stack trace information flows to this location and may be exposed to an external user.
Stack trace information flows to this location and may be exposed to an external user.

Comment on lines 28 to 33
@staticmethod
def _handle_error(exception):
return jsonify({
"error": str(exception)
}), 500

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Secure error handling to prevent information exposure

The current implementation exposes raw exception messages, which could leak sensitive information. Consider implementing a more secure error handling approach.

     @staticmethod
-    def _handle_error(exception):
+    def _handle_error(exception: Exception) -> Tuple[Any, int]:
+        """Handle exceptions securely.
+        
+        Args:
+            exception: The caught exception
+        Returns:
+            Tuple of (response, status_code)
+        """
+        # Log the full error for debugging
+        logging.error(f"Error in report generation: {str(exception)}", exc_info=True)
+        
+        # Return a sanitized error message
         return jsonify({
-            "error": str(exception)
+            "error": "An internal error occurred while processing your request",
+            "request_id": request.headers.get('X-Request-ID', 'unknown')
         }), 500

Committable suggestion skipped: line range outside the PR's diff.

🧰 Tools
🪛 GitHub Check: CodeQL

[warning] 30-32: Information exposure through an exception
Stack trace information flows to this location and may be exposed to an external user.
Stack trace information flows to this location and may be exposed to an external user.

Comment on lines +60 to +84
@staticmethod
def generate_air_quality_report_without_llm():
"""Generate a report without using LLM."""
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response

try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report without LLM
json_report = report.generate_report_without_llm()

if json_report is None:
return jsonify({
"error": "Failed to generate report"
}), 500

return jsonify({
"report": json_report,
"model": "rule_based"
}), 200

except Exception as e:
return ReportView._handle_error(e)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Reduce code duplication in report generation methods

The non-LLM report generation method shares significant code with the Gemini version. Consider extracting common functionality.

+    @staticmethod
+    def _generate_report(generator_func: callable, model_name: str) -> Tuple[Any, int]:
+        """Generic report generation method.
+        
+        Args:
+            generator_func: Function to generate the report
+            model_name: Name of the model being used
+        Returns:
+            Tuple of (response, status_code)
+        """
+        data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
+        if error_response:
+            return error_response
+
+        try:
+            with ThreadPoolExecutor() as executor:
+                future = executor.submit(generator_func)
+                try:
+                    json_report = future.result(timeout=30)
+                except TimeoutError:
+                    return jsonify({
+                        "error": f"Report generation with {model_name} timed out",
+                        "details": "The request took too long to process"
+                    }), 504
+
+            if json_report is None:
+                return jsonify({
+                    "error": f"Failed to generate report with {model_name}",
+                    "details": "The model failed to generate a valid response"
+                }), 500
+
+            return jsonify({
+                "report": json_report,
+                "model": model_name
+            }), 200
+
+        except Exception as e:
+            return ReportView._handle_error(e)

     @staticmethod
     def generate_air_quality_report_without_llm():
-        """Generate a report without using LLM."""
-        data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
-        if error_response:
-            return error_response
-
-        try:
-            # Create an air quality report
-            report = AirQualityReport(air_quality_data)
-            # Generate the report without LLM
-            json_report = report.generate_report_without_llm()
-
-            if json_report is None:
-                return jsonify({
-                    "error": "Failed to generate report"
-                }), 500
-
-            return jsonify({
-                "report": json_report,
-                "model": "rule_based"
-            }), 200
-
-        except Exception as e:
-            return ReportView._handle_error(e)
+        """Generate a report without using LLM.
+        
+        Returns:
+            Tuple of (response, status_code)
+        """
+        report = AirQualityReport(air_quality_data)
+        return ReportView._generate_report(
+            generator_func=report.generate_report_without_llm,
+            model_name="rule_based"
+        )

Committable suggestion skipped: line range outside the PR's diff.

Copy link
Contributor

Spatial changes in this PR available for preview here

1 similar comment
Copy link
Contributor

Spatial changes in this PR available for preview here

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

🧹 Outside diff range and nitpick comments (1)
src/spatial/models/report_datafetcher.py (1)

88-88: Reconsider placement of "include the period under review" in prompts.

The phrase "include the period under review" may be redundant or misplaced within the prompts, potentially causing confusion in the generated reports. Ensure that this instruction is necessary and positioned appropriately within the prompt.

Apply this diff to remove or reposition the phrase:

             if audience == "researcher":
                 return (   
                     f"Generate a comprehensive air quality assessment report for {self.grid_name} for the period of {self.starttime} to {self.endtime}. Begin with a detailed introduction (100-130 words) covering the city's geographical location, climate characteristics, population density, and major pollution sources.\n"
-                    f"{base_info} include the period under review."
+                    f"{base_info}\n"

Make similar adjustments for the other audience types if necessary.

Also applies to: 98-98, 106-106

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between 054371f and 4b7f80f.

📒 Files selected for processing (1)
  • src/spatial/models/report_datafetcher.py (1 hunks)
🧰 Additional context used
🪛 Ruff
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)

🔇 Additional comments (4)
src/spatial/models/report_datafetcher.py (4)

24-24: Previous comment on ANALTICS_URL typo is still valid.

The variable ANALTICS_URL appears to be misspelled. It should likely be ANALYTICS_URL. This typo could cause issues when accessing the configuration.


29-29: Previous comment on passing token in URL is still valid.

Including sensitive tokens in URL query parameters is insecure. The token should be passed in the request headers instead.


127-132: 🛠️ Refactor suggestion

Add exception handling for OpenAI API calls.

Interacting with external APIs can lead to unexpected errors. Implement exception handling around the OpenAI API call to manage potential issues gracefully and maintain application stability.

Apply this diff to add error handling:

         def generate_report_with_openai(self, audience):
             prompt = self._generate_prompt(audience)
+            try:
                 response = openai.ChatCompletion.create(
                     model="gpt-3.5-turbo",
                     messages=[{"role": "user", "content": prompt}]
                 )
                 openai_output = response.choices[0].message['content']
                 return self._prepare_report_json(openai_output)
+            except openai.error.OpenAIError as e:
+                logging.error(f"OpenAI API error: {e}")
+                return self._prepare_report_json("An error occurred while generating the report.")

Ensure that the logging module is imported if it's not already.

Likely invalid or redundant comment.


120-123: 🛠️ Refactor suggestion

Add exception handling for Gemini API calls.

To prevent the application from crashing due to unexpected errors with the Gemini API, add exception handling around the API call.

Apply this diff to add error handling:

         def generate_report_with_gemini(self, audience):
             prompt = self._generate_prompt(audience)
+            try:
                 response = self.gemini_model.generate_content(prompt)
                 gemini_output = response.text
                 return self._prepare_report_json(gemini_output)
+            except Exception as e:
+                logging.error(f"Gemini API error: {e}")
+                return self._prepare_report_json("An error occurred while generating the report.")

Likely invalid or redundant comment.

@airqo-platform airqo-platform deleted a comment from coderabbitai bot Nov 21, 2024
@airqo-platform airqo-platform deleted a comment from coderabbitai bot Nov 21, 2024
@airqo-platform airqo-platform deleted a comment from coderabbitai bot Nov 21, 2024
@airqo-platform airqo-platform deleted a comment from coderabbitai bot Nov 21, 2024
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

🧹 Outside diff range and nitpick comments (4)
src/spatial/models/report_datafetcher.py (4)

16-19: Enhance error handling for missing Hugging Face token.

Consider using the logging module instead of print statements for better error tracking and consistency.

 if hf_token:
     login(hf_token)
 else:
-    print("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")
+    logging.error("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")

51-65: Consider refactoring data extraction logic.

The nested dictionary access with multiple .get() calls could be simplified using a helper method.

+    def _extract_data(self, *keys, default=None):
+        result = self.data
+        for key in keys:
+            if not isinstance(result, dict):
+                return default
+            result = result.get(key, default)
+        return result

     def __init__(self, data):
         self.data = data
-        self.grid_name = data.get('airquality', {}).get('sites', {}).get('grid name', [None])
+        self.grid_name = self._extract_data('airquality', 'sites', 'grid name', [None])

104-106: Simplify strings without interpolation.

Remove unnecessary f-string prefixes from strings without placeholders.

-                f"Diurnal patterns indicate peak pollution levels at {self._format_diurnal_peak()}.\n"  
-                f"Monthly trends reveal fluctuations correlated with seasonal changes.\n"  
-                f"Provide a thorough analysis of spatial and temporal air quality variations, identify pollution hotspots and clean zones, examine seasonal patterns, and assess compliance with WHO guidelines. "  
+                f"Diurnal patterns indicate peak pollution levels at {self._format_diurnal_peak()}.\n"  
+                "Monthly trends reveal fluctuations correlated with seasonal changes.\n"  
+                "Provide a thorough analysis of spatial and temporal air quality variations, identify pollution hotspots and clean zones, examine seasonal patterns, and assess compliance with WHO guidelines. "  
🧰 Tools
🪛 Ruff

104-104: f-string without any placeholders

Remove extraneous f prefix

(F541)


105-105: f-string without any placeholders

Remove extraneous f prefix

(F541)


106-106: f-string without any placeholders

Remove extraneous f prefix

(F541)


1-225: Consider implementing a caching mechanism for API responses.

Given that this system makes multiple API calls to external services (AirQo API, Gemini, OpenAI), implementing a caching mechanism would:

  1. Improve response times for frequently requested reports
  2. Reduce API costs
  3. Provide resilience against API outages

Consider using Redis or a similar caching solution to store:

  • Air quality data responses
  • Generated reports with appropriate TTL
🧰 Tools
🪛 Ruff

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)


104-104: f-string without any placeholders

Remove extraneous f prefix

(F541)


105-105: f-string without any placeholders

Remove extraneous f prefix

(F541)


106-106: f-string without any placeholders

Remove extraneous f prefix

(F541)

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between 569975d and 66199f1.

📒 Files selected for processing (1)
  • src/spatial/models/report_datafetcher.py (1 hunks)
🧰 Additional context used
🪛 Ruff
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)


104-104: f-string without any placeholders

Remove extraneous f prefix

(F541)


105-105: f-string without any placeholders

Remove extraneous f prefix

(F541)


106-106: f-string without any placeholders

Remove extraneous f prefix

(F541)

🔇 Additional comments (2)
src/spatial/models/report_datafetcher.py (2)

33-46: Well-implemented error handling!

The comprehensive error handling with specific exception types and proper logging is a good practice.


132-136: Add error handling for Gemini API calls.

This is a duplicate of a past review comment. The Gemini API calls should include error handling similar to the OpenAI implementation.

@@ -0,0 +1,235 @@
import requests
import openai
from transformers import AutoModelForCausalLM, AutoTokenizer
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Remove unused imports from the transformers library.

The AutoModelForCausalLM and AutoTokenizer imports are not used in the current implementation.

-from transformers import AutoModelForCausalLM, AutoTokenizer
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
from transformers import AutoModelForCausalLM, AutoTokenizer
🧰 Tools
🪛 Ruff

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)

Comment on lines +79 to +81
# Initialize models once in the constructor
self.gemini_model = genai.GenerativeModel('gemini-pro')
openai.api_key = Config.OPENAI_API_KEY
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Add error handling for model initialization.

The model initialization could fail silently if API keys are invalid or if there are connection issues.

         # Initialize models once in the constructor
-        self.gemini_model = genai.GenerativeModel('gemini-pro')
-        openai.api_key = Config.OPENAI_API_KEY
+        try:
+            self.gemini_model = genai.GenerativeModel('gemini-pro')
+            openai.api_key = Config.OPENAI_API_KEY
+        except Exception as e:
+            logging.error(f"Failed to initialize AI models: {e}")
+            raise
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
# Initialize models once in the constructor
self.gemini_model = genai.GenerativeModel('gemini-pro')
openai.api_key = Config.OPENAI_API_KEY
# Initialize models once in the constructor
try:
self.gemini_model = genai.GenerativeModel('gemini-pro')
openai.api_key = Config.OPENAI_API_KEY
except Exception as e:
logging.error(f"Failed to initialize AI models: {e}")
raise

Copy link
Contributor

Spatial changes in this PR available for preview here

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 6

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between 66199f1 and 4178f4a.

📒 Files selected for processing (1)
  • src/spatial/models/report_datafetcher.py (1 hunks)
🧰 Additional context used
🪛 Ruff
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)


104-104: f-string without any placeholders

Remove extraneous f prefix

(F541)


105-105: f-string without any placeholders

Remove extraneous f prefix

(F541)


106-106: f-string without any placeholders

Remove extraneous f prefix

(F541)

Comment on lines 1 to 8
import requests
import openai
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from configure import Config
import google.generativeai as genai
import logging

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Clean up imports and improve error handling.

  1. Remove unused imports from the transformers library.
  2. Use logging consistently instead of print statements for error handling.

Apply this diff:

 import requests
 import openai
-from transformers import AutoModelForCausalLM, AutoTokenizer
 from huggingface_hub import login
 from configure import Config
 import google.generativeai as genai 
 import logging
+
+# Configure logging
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
import requests
import openai
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from configure import Config
import google.generativeai as genai
import logging
import requests
import openai
from huggingface_hub import login
from configure import Config
import google.generativeai as genai
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
🧰 Tools
🪛 Ruff

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)

src/spatial/models/report_datafetcher.py Outdated Show resolved Hide resolved
Comment on lines +10 to +20
# Configure API keys
GOOGLE_API_KEY = Config.GOOGLE_API_KEY
genai.configure(api_key=GOOGLE_API_KEY)
hf_token = Config.HUGGING_FACE_TOKEN


if hf_token:
login(hf_token)
else:
print("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Improve API configuration error handling.

The current implementation uses print statements and doesn't properly handle configuration errors.

Apply this diff:

 # Configure API keys
-GOOGLE_API_KEY = Config.GOOGLE_API_KEY
-genai.configure(api_key=GOOGLE_API_KEY)
-hf_token = Config.HUGGING_FACE_TOKEN
+try:
+    GOOGLE_API_KEY = Config.GOOGLE_API_KEY
+    if not GOOGLE_API_KEY:
+        raise ValueError("GOOGLE_API_KEY is not set")
+    genai.configure(api_key=GOOGLE_API_KEY)
 
+    hf_token = Config.HUGGING_FACE_TOKEN
+    if hf_token:
+        login(hf_token)
+    else:
+        logger.warning("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")
+except Exception as e:
+    logger.error(f"Failed to configure API keys: {e}")
+    raise
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
# Configure API keys
GOOGLE_API_KEY = Config.GOOGLE_API_KEY
genai.configure(api_key=GOOGLE_API_KEY)
hf_token = Config.HUGGING_FACE_TOKEN
if hf_token:
login(hf_token)
else:
print("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")
# Configure API keys
try:
GOOGLE_API_KEY = Config.GOOGLE_API_KEY
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set")
genai.configure(api_key=GOOGLE_API_KEY)
hf_token = Config.HUGGING_FACE_TOKEN
if hf_token:
login(hf_token)
else:
logger.warning("Hugging Face token is missing. Set the 'HUGGING_FACE_TOKEN' environment variable.")
except Exception as e:
logger.error(f"Failed to configure API keys: {e}")
raise

Comment on lines 49 to 81
class AirQualityReport:
def __init__(self, data):
self.data = data
self.grid_name = data.get('airquality', {}).get('sites', {}).get('grid name', [None])
self.annual_data = data.get('airquality', {}).get('annual_pm', [None])[0]
self.daily_mean_data = data.get('airquality', {}).get('daily_mean_pm', [])
self.diurnal = data.get('airquality', {}).get('diurnal', [])
self.monthly_data = data.get('airquality', {}).get('site_monthly_mean_pm', [])
self.monthly_name_data = data.get('airquality', {}).get('pm_by_month_name', [])
main_site_info = self.monthly_data[0] if self.monthly_data else {}
self.main_site = main_site_info.get('site_name')
self.site_names = [item.get('site_name', None) for item in self.data.get('airquality', {}).get('site_annual_mean_pm', [])]
self.site_latitude = main_site_info.get('site_latitude')
self.site_longitude = main_site_info.get('site_longitude')
self.num_sites = data.get('airquality', {}).get('sites', {}).get('number_of_sites')
self.starttime = data.get('airquality', {}).get('period', {}).get('startTime', '')[:10]
self.endtime = data.get('airquality', {}).get('period', {}).get('endTime', '')[:10]

self.annual_pm2_5_calibrated_value = self.annual_data.get("pm2_5_calibrated_value")
self.annual_pm10_calibrated_value = self.annual_data.get("pm10_calibrated_value")

# Finding the minimum and maximum values
if self.daily_mean_data:
self.daily_min_pm2_5 = min(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
self.daily_max_pm2_5 = max(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
else:
self.daily_min_pm2_5 = None
self.daily_max_pm2_5 = None


# Initialize models once in the constructor
self.gemini_model = genai.GenerativeModel('gemini-pro')
openai.api_key = Config.OPENAI_API_KEY
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Add proper data validation and error handling.

The class initialization needs several improvements:

  1. Validate data structure before access
  2. Handle model initialization errors
  3. Add type hints for better maintainability

Apply this diff:

 class AirQualityReport:  
+    def __validate_data(self, data):
+        if not isinstance(data, dict):
+            raise ValueError("Input data must be a dictionary")
+        if 'airquality' not in data:
+            raise ValueError("Missing 'airquality' key in data")
+
     def __init__(self, data): 
+        self.__validate_data(data)
         self.data = data
-        self.grid_name = data.get('airquality', {}).get('sites', {}).get('grid name', [None])
+        self.grid_name = data.get('airquality', {}).get('sites', {}).get('grid name', ['Unknown'])[0]
         self.annual_data = data.get('airquality', {}).get('annual_pm', [{}])[0]
         self.daily_mean_data = data.get('airquality', {}).get('daily_mean_pm', [])
         self.diurnal = data.get('airquality', {}).get('diurnal', [])
         self.monthly_data = data.get('airquality', {}).get('site_monthly_mean_pm', [])
         self.monthly_name_data = data.get('airquality', {}).get('pm_by_month_name', [])
         main_site_info = self.monthly_data[0] if self.monthly_data else {}
         
         # Initialize models with error handling
         try:
             self.gemini_model = genai.GenerativeModel('gemini-pro')
             openai.api_key = Config.OPENAI_API_KEY
             if not openai.api_key:
                 raise ValueError("OpenAI API key is not set")
         except Exception as e:
             logger.error(f"Failed to initialize AI models: {e}")
             raise

Committable suggestion skipped: line range outside the PR's diff.

Comment on lines 21 to 48
class DataFetcher:
@staticmethod
def fetch_air_quality_data_a(grid_id, start_time, end_time):
token = Config.AIRQO_API_TOKEN
analytics_url = Config.ANALTICS_URL
if token is None:
print("Error: AIRQO_API_TOKEN environment variable is not set.")
return None

url= f"{analytics_url}?token={token}"
payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}

try:
response = requests.post(url, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
logging.error(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as req_err:
print(f"Request error occurred: {req_err}")
logging.error(f"Request error occurred: {req_err}")
except ValueError as json_err:
print(f"JSON decoding error: {json_err}")
logging.error(f"JSON decoding error: {json_err}")

return None

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Enhance security and robustness of data fetching.

Several improvements needed for security and reliability:

  1. Move token from URL to headers
  2. Add request timeout
  3. Use consistent logging

Apply this diff:

     @staticmethod
     def fetch_air_quality_data_a(grid_id, start_time, end_time):
         token = Config.AIRQO_API_TOKEN  
         analytics_url = Config.ANALTICS_URL
         if token is None:
-            print("Error: AIRQO_API_TOKEN environment variable is not set.")
+            logger.error("AIRQO_API_TOKEN environment variable is not set.")
             return None

-        url= f"{analytics_url}?token={token}"
+        url = analytics_url
         payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
+        headers = {"Authorization": f"Bearer {token}"}

         try:
-            response = requests.post(url, json=payload)
+            response = requests.post(url, json=payload, headers=headers, timeout=30)
             response.raise_for_status()
             return response.json()
         except requests.exceptions.HTTPError as http_err:
-            print(f"HTTP error occurred: {http_err}")
             logging.error(f"HTTP error occurred: {http_err}")
         except requests.exceptions.RequestException as req_err:
-            print(f"Request error occurred: {req_err}")
             logging.error(f"Request error occurred: {req_err}")
         except ValueError as json_err:
-            print(f"JSON decoding error: {json_err}")
             logging.error(f"JSON decoding error: {json_err}")

         return None
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
class DataFetcher:
@staticmethod
def fetch_air_quality_data_a(grid_id, start_time, end_time):
token = Config.AIRQO_API_TOKEN
analytics_url = Config.ANALTICS_URL
if token is None:
print("Error: AIRQO_API_TOKEN environment variable is not set.")
return None
url= f"{analytics_url}?token={token}"
payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
try:
response = requests.post(url, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
logging.error(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as req_err:
print(f"Request error occurred: {req_err}")
logging.error(f"Request error occurred: {req_err}")
except ValueError as json_err:
print(f"JSON decoding error: {json_err}")
logging.error(f"JSON decoding error: {json_err}")
return None
class DataFetcher:
@staticmethod
def fetch_air_quality_data_a(grid_id, start_time, end_time):
token = Config.AIRQO_API_TOKEN
analytics_url = Config.ANALTICS_URL
if token is None:
logger.error("AIRQO_API_TOKEN environment variable is not set.")
return None
url = analytics_url
payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
headers = {"Authorization": f"Bearer {token}"}
try:
response = requests.post(url, json=payload, headers=headers, timeout=30)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as http_err:
logging.error(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as req_err:
logging.error(f"Request error occurred: {req_err}")
except ValueError as json_err:
logging.error(f"JSON decoding error: {json_err}")
return None

Copy link
Contributor

Spatial changes in this PR available for preview here

1 similar comment
Copy link
Contributor

Spatial changes in this PR available for preview here

@airqo-platform airqo-platform deleted a comment from coderabbitai bot Nov 21, 2024
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 7

🧹 Outside diff range and nitpick comments (6)
src/spatial/controllers/controllers.py (1)

72-72: Consider more descriptive function names.

The current function names (fetch_air_quality, fetch_air_quality_without_llm, fetch_air_quality_with_customised_prompt) could be more descriptive about their specific purposes.

Suggested names:

-def fetch_air_quality():
+def generate_gemini_air_quality_report():

-def fetch_air_quality_without_llm():
+def generate_basic_air_quality_report():

-def fetch_air_quality_with_customised_prompt():
+def generate_custom_prompt_air_quality_report():

Also applies to: 76-76, 80-80

src/spatial/views/report_view.py (2)

1-4: Consider adding type hints for better code maintainability

Adding type hints would improve code maintainability and IDE support. Consider:

-from flask import request, jsonify
+from flask import Request, Response, jsonify
+from typing import Dict, Any, Tuple, Optional
 from models.report_datafetcher import DataFetcher, AirQualityReport

13-13: Remove unused variable assignment

The customise_prompt variable is assigned but never used in this method. Since it's used in generate_air_quality_report_with_customised_prompt_gemini(), consider moving the assignment there.

🧰 Tools
🪛 Ruff (0.8.0)

13-13: Local variable customise_prompt is assigned to but never used

Remove assignment to unused variable customise_prompt

(F841)

src/spatial/models/report_datafetcher.py (3)

106-108: Remove extraneous 'f' prefixes in strings without placeholders

Lines 106 to 108 contain f-strings without any placeholders. The f prefix is unnecessary and can be removed to clean up the code.

Apply this diff to remove the extraneous f prefixes:

             )
-                f"Monthly trends reveal fluctuations correlated with seasonal changes.\n"  
-                f"Provide a thorough analysis of spatial and temporal air quality variations, identify pollution hotspots and clean zones, examine seasonal patterns, and assess compliance with WHO guidelines. "  
-                f"Conclude with actionable recommendations for air quality improvement and public health protection. Data source: AirQo monitoring network."  
+                "Monthly trends reveal fluctuations correlated with seasonal changes.\n"  
+                "Provide a thorough analysis of spatial and temporal air quality variations, identify pollution hotspots and clean zones, examine seasonal patterns, and assess compliance with WHO guidelines. "  
+                "Conclude with actionable recommendations for air quality improvement and public health protection. Data source: AirQo monitoring network."  
         ) 
🧰 Tools
🪛 Ruff (0.8.0)

106-106: f-string without any placeholders

Remove extraneous f prefix

(F541)


107-107: f-string without any placeholders

Remove extraneous f prefix

(F541)


108-108: f-string without any placeholders

Remove extraneous f prefix

(F541)


212-213: Handle 'None' values in report content to avoid confusing outputs

Variables like least_pm2_5_time and least_pm2_5 might be None when there's insufficient data. Including them in the report without checking can lead to outputs like "None :00 hr" or "PM2.5 None µg/m³ levels," which could be misleading.

Consider adding conditional statements to handle None values:

if peak_pm2_5 and peak_time:
    peak_info = f"The peak in PM2.5 levels ({peak_pm2_5} µg/m³) occurs around {peak_time}:00 hr, indicating a period of higher pollution, often associated with increased activity or traffic."
else:
    peak_info = "Peak PM2.5 levels could not be determined due to insufficient data."

if least_pm2_5 and least_pm2_5_time:
    least_info = f"Conversely, the period with the least PM2.5 levels ({least_pm2_5} µg/m³) is around {least_pm2_5_time}:00 hr, usually representing a period of lower activity or better atmospheric dispersion."
else:
    least_info = "Least PM2.5 levels could not be determined due to insufficient data."

diurnal_description = (
    f"Diurnal patterns observed include the following: {diurnal_patterns}. "
    f"These patterns provide insight into air quality fluctuations throughout the day. "
    f"{peak_info} "
    f"{least_info} "
    "Understanding the patterns of pollution and their impacts on public health is crucial for effective environmental management and policy-making. "
    "Throughout this report, we will explore key trends in PM2.5 and PM10 concentrations, the diurnal variations, and the impact of these levels on air quality across the region."
)

141-175: Use logging instead of print statements for error messages

Throughout the report generation methods, print statements are used for error handling. Using the logging module provides better control over logging levels and integrates well with production environments.

Apply this diff to replace print statements with logging:

         def generate_report_with_gemini(self, audience):
             prompt = self._generate_prompt(audience)
             try:
                 response = self.gemini_model.generate_content(prompt)
                 gemini_output = response.text
                 return self._prepare_report_json(gemini_output)
             except Exception as e:
-                print(f"Error: {e}")
+                logging.error(f"Error generating report with Gemini: {e}")
                 return None

         # Generate report with customised prompt
         def generate_report_with_customised_prompt_gemini(self, custom_prompt):
             # [code omitted for brevity]
             try:
                 response = self.gemini_model.generate_content(full_prompt)
                 gemini_output = response.text
                 return self._prepare_customised_report_json(gemini_output)
             except Exception as e:
-                print(f"Error: {e}")
+                logging.error(f"Error generating customised report with Gemini: {e}")
                 return None

         def generate_report_with_openai(self, audience):
             prompt = self._generate_prompt(audience)
             try:
                 response = openai.ChatCompletion.create(
                     model="gpt-3.5-turbo",
                     messages=[{"role": "user", "content": prompt}]
                 )
                 openai_output = response.choices[0].message['content']
                 return self._prepare_report_json(openai_output)
             except Exception as e:
-                print(f"Error: {e}")
+                logging.error(f"Error generating report with OpenAI: {e}")
                 return None
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between 4178f4a and c14792f.

📒 Files selected for processing (3)
  • src/spatial/controllers/controllers.py (2 hunks)
  • src/spatial/models/report_datafetcher.py (1 hunks)
  • src/spatial/views/report_view.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.0)
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)


106-106: f-string without any placeholders

Remove extraneous f prefix

(F541)


107-107: f-string without any placeholders

Remove extraneous f prefix

(F541)


108-108: f-string without any placeholders

Remove extraneous f prefix

(F541)

src/spatial/views/report_view.py

13-13: Local variable customise_prompt is assigned to but never used

Remove assignment to unused variable customise_prompt

(F841)

🔇 Additional comments (2)
src/spatial/controllers/controllers.py (2)

15-15: LGTM! Clean import addition.

The import statement follows the established pattern and is appropriately placed with other view imports.


71-81: Verify the integration with external services.

The routes interact with multiple external services (Gemini, LLaMA) and data sources. Let's verify the configuration and dependencies are properly set up.

Comment on lines +71 to +74
@controller_bp.route("/air_quality_report", methods=["POST"])
def fetch_air_quality():
return ReportView.generate_air_quality_report_with_gemini()

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Consider enhancing the route implementations with proper error handling and documentation.

While the implementations are concise, there are several opportunities for improvement:

  1. Add error handling to gracefully handle potential exceptions from the report generation process
  2. Include request validation to ensure required parameters are present
  3. Add API documentation to describe the expected request format and response structure

Here's a suggested implementation pattern:

 @controller_bp.route("/air_quality_report", methods=["POST"])
 def fetch_air_quality():
-    return ReportView.generate_air_quality_report_with_gemini()
+    """Generate air quality report using Gemini model.
+    
+    Expected payload:
+        {
+            "grid_id": str,
+            "start_time": str,
+            "end_time": str
+        }
+    """
+    try:
+        return ReportView.generate_air_quality_report_with_gemini()
+    except Exception as e:
+        return jsonify({"error": str(e)}), 500

Apply similar patterns to the other two routes as well.

Also applies to: 75-78, 79-81

Comment on lines +6 to +28
def _fetch_and_validate_request_data():
"""Extract and validate request data."""
data = request.json
grid_id = data.get("grid_id")
start_time = data.get("start_time")
end_time = data.get("end_time")
audience = data.get("audience", "general public")
customise_prompt = data.get("customise_prompt", "") # Optional customization

# Validate input parameters
if not all([grid_id, start_time, end_time, audience]):
return None, jsonify({
"error": "Missing required parameters: grid_id, start_time, end_time, audience"
}), 400

# Fetch air quality data
air_quality_data = DataFetcher.fetch_air_quality_data_a(grid_id, start_time, end_time)
if air_quality_data is None:
return None, jsonify({
"error": "No data found for the given parameters"
}), 404

return data, air_quality_data, None
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Enhance input validation and return type clarity

The current implementation could benefit from more robust input validation and clearer return types:

  1. Add type hints and improve docstring
  2. Validate input formats (e.g., date formats, grid_id format)
  3. Return a TypedDict instead of a tuple for better type safety
    @staticmethod
-   def _fetch_and_validate_request_data():
+   def _fetch_and_validate_request_data() -> Tuple[Optional[Dict[str, Any]], Optional[Dict[str, Any]], Optional[Response]]:
        """Extract and validate request data.
        
        Returns:
            Tuple[Optional[Dict], Optional[Dict], Optional[Response]]: Contains
            - Request data dictionary
            - Air quality data dictionary
            - Error response (if validation fails)
        """
        data = request.json
+       if not isinstance(data, dict):
+           return None, None, jsonify({"error": "Invalid JSON payload"}), 400

Committable suggestion skipped: line range outside the PR's diff.

🧰 Tools
🪛 Ruff (0.8.0)

13-13: Local variable customise_prompt is assigned to but never used

Remove assignment to unused variable customise_prompt

(F841)

Comment on lines +30 to +34
def _handle_error(exception):
return jsonify({
# "error": str(exception)
"error": "An internal error has occurred!"
}), 500
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Enhance error handling with secure logging

While hiding exception details from responses is good for security, we should log them for debugging:

    @staticmethod
-   def _handle_error(exception):
+   def _handle_error(exception: Exception) -> Tuple[Response, int]:
+       """Handle exceptions securely while preserving debug information."""
+       # Log the full error for debugging
+       current_app.logger.error(
+           f"Error in report generation: {str(exception)}",
+           exc_info=True,
+           extra={
+               "request_id": request.headers.get("X-Request-ID", "unknown")
+           }
+       )
        return jsonify({
            "error": "An internal error has occurred!",
+           "request_id": request.headers.get("X-Request-ID", "unknown")
        }), 500
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def _handle_error(exception):
return jsonify({
# "error": str(exception)
"error": "An internal error has occurred!"
}), 500
@staticmethod
def _handle_error(exception: Exception) -> Tuple[Response, int]:
"""Handle exceptions securely while preserving debug information."""
# Log the full error for debugging
current_app.logger.error(
f"Error in report generation: {str(exception)}",
exc_info=True,
extra={
"request_id": request.headers.get("X-Request-ID", "unknown")
}
)
return jsonify({
"error": "An internal error has occurred!",
"request_id": request.headers.get("X-Request-ID", "unknown")
}), 500

Comment on lines +36 to +112
@staticmethod
def generate_air_quality_report_with_gemini():
"""Generate a report using Gemini model."""
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response

try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report with Gemini
json_report = report.generate_report_with_gemini(data.get("audience", "general public"))

if json_report is None:
return jsonify({
"error": "Failed to generate report with Gemini"
}), 500

return jsonify({
"report": json_report,
"model": "gemini"
}), 200

except Exception as e:
return ReportView._handle_error(e)

@staticmethod
def generate_air_quality_report_without_llm():
"""Generate a report without using LLM."""
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response

try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report without LLM
json_report = report.generate_report_without_llm()

if json_report is None:
return jsonify({
"error": "Failed to generate report"
}), 500

return jsonify({
"report": json_report,
"model": "rule_based"
}), 200

except Exception as e:
return ReportView._handle_error(e)


@staticmethod
def generate_air_quality_report_with_customised_prompt_gemini():
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response

try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report with Gemini
json_report = report.generate_report_with_customised_prompt_gemini(data.get("customise_prompt", ""))

if json_report is None:
return jsonify({
"error": "Failed to generate report with Gemini"
}), 500

return jsonify({
"report": json_report,
"model": "gemini"
}), 200

except Exception as e:
return ReportView._handle_error(e)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Reduce code duplication in report generation methods

The three report generation methods share significant code structure. Consider extracting the common pattern:

+   @staticmethod
+   def _generate_report(
+       generator_func: callable,
+       model_name: str,
+       audience: Optional[str] = None
+   ) -> Tuple[Response, int]:
+       """Generic report generation method.
+       
+       Args:
+           generator_func: Function to generate the report
+           model_name: Name of the model being used
+           audience: Optional audience parameter
+       """
+       data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
+       if error_response:
+           return error_response
+
+       try:
+           report = AirQualityReport(air_quality_data)
+           json_report = generator_func(report, data)
+
+           if json_report is None:
+               return jsonify({
+                   "error": f"Failed to generate report with {model_name}"
+               }), 500
+
+           return jsonify({
+               "report": json_report,
+               "model": model_name
+           }), 200
+
+       except Exception as e:
+           return ReportView._handle_error(e)

Then simplify the existing methods:

    @staticmethod
    def generate_air_quality_report_with_gemini():
        """Generate a report using Gemini model."""
-       data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
-       if error_response:
-           return error_response
-
-       try:
-           report = AirQualityReport(air_quality_data)
-           json_report = report.generate_report_with_gemini(data.get("audience", "general public"))
-
-           if json_report is None:
-               return jsonify({
-                   "error": "Failed to generate report with Gemini"
-               }), 500
-
-           return jsonify({
-               "report": json_report,
-               "model": "gemini"
-           }), 200
-
-       except Exception as e:
-           return ReportView._handle_error(e)
+       return ReportView._generate_report(
+           lambda r, d: r.generate_report_with_gemini(d.get("audience", "general public")),
+           "gemini"
+       )
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
@staticmethod
def generate_air_quality_report_with_gemini():
"""Generate a report using Gemini model."""
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response
try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report with Gemini
json_report = report.generate_report_with_gemini(data.get("audience", "general public"))
if json_report is None:
return jsonify({
"error": "Failed to generate report with Gemini"
}), 500
return jsonify({
"report": json_report,
"model": "gemini"
}), 200
except Exception as e:
return ReportView._handle_error(e)
@staticmethod
def generate_air_quality_report_without_llm():
"""Generate a report without using LLM."""
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response
try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report without LLM
json_report = report.generate_report_without_llm()
if json_report is None:
return jsonify({
"error": "Failed to generate report"
}), 500
return jsonify({
"report": json_report,
"model": "rule_based"
}), 200
except Exception as e:
return ReportView._handle_error(e)
@staticmethod
def generate_air_quality_report_with_customised_prompt_gemini():
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response
try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report with Gemini
json_report = report.generate_report_with_customised_prompt_gemini(data.get("customise_prompt", ""))
if json_report is None:
return jsonify({
"error": "Failed to generate report with Gemini"
}), 500
return jsonify({
"report": json_report,
"model": "gemini"
}), 200
except Exception as e:
return ReportView._handle_error(e)
@staticmethod
def _generate_report(
generator_func: callable,
model_name: str,
audience: Optional[str] = None
) -> Tuple[Response, int]:
"""Generic report generation method.
Args:
generator_func: Function to generate the report
model_name: Name of the model being used
audience: Optional audience parameter
"""
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response
try:
report = AirQualityReport(air_quality_data)
json_report = generator_func(report, data)
if json_report is None:
return jsonify({
"error": f"Failed to generate report with {model_name}"
}), 500
return jsonify({
"report": json_report,
"model": model_name
}), 200
except Exception as e:
return ReportView._handle_error(e)
@staticmethod
def generate_air_quality_report_with_gemini():
"""Generate a report using Gemini model."""
return ReportView._generate_report(
lambda r, d: r.generate_report_with_gemini(d.get("audience", "general public")),
"gemini"
)
@staticmethod
def generate_air_quality_report_without_llm():
"""Generate a report without using LLM."""
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response
try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report without LLM
json_report = report.generate_report_without_llm()
if json_report is None:
return jsonify({
"error": "Failed to generate report"
}), 500
return jsonify({
"report": json_report,
"model": "rule_based"
}), 200
except Exception as e:
return ReportView._handle_error(e)
@staticmethod
def generate_air_quality_report_with_customised_prompt_gemini():
data, air_quality_data, error_response = ReportView._fetch_and_validate_request_data()
if error_response:
return error_response
try:
# Create an air quality report
report = AirQualityReport(air_quality_data)
# Generate the report with Gemini
json_report = report.generate_report_with_customised_prompt_gemini(data.get("customise_prompt", ""))
if json_report is None:
return jsonify({
"error": "Failed to generate report with Gemini"
}), 500
return jsonify({
"report": json_report,
"model": "gemini"
}), 200
except Exception as e:
return ReportView._handle_error(e)

Comment on lines +94 to +130
def _generate_prompt(self, audience):
base_info = self._prepare_base_info()
if audience == "researcher":
return (
- f"Generate a comprehensive air quality assessment report for {self.grid_name} for the period of {self.starttime} to {self.endtime}. Begin with a detailed introduction (100-130 words) covering the city's geographical location, climate characteristics, population density, and major pollution sources. "
- f"{base_info} include the period under review."
- f"Daily mean measurements show: {self.daily_mean_data}. "
- f"Diurnal patterns indicate: {self.diurnal}. Monthly trends reveal: {self.monthly_data}. "
+ f"Generate a comprehensive air quality assessment report for {self.grid_name} for the period of {self.starttime} to {self.endtime}. Begin with a detailed introduction (100-130 words) covering the city's geographical location, climate characteristics, population density, and major pollution sources.\n"
+ f"{base_info}\n"
+ f"Daily mean measurements show values ranging from {self.daily_min_pm2_5['pm2_5_calibrated_value']} to {self.daily_max_pm2_5['pm2_5_calibrated_value']} µg/m³.\n"
+ f"Diurnal patterns indicate peak pollution levels at {self._format_diurnal_peak()}.\n"
+ f"Monthly trends reveal fluctuations correlated with seasonal changes.\n"
f"Provide a thorough analysis of spatial and temporal air quality variations, identify pollution hotspots and clean zones, examine seasonal patterns, and assess compliance with WHO guidelines. "
f"Conclude with actionable recommendations for air quality improvement and public health protection. Data source: AirQo monitoring network."
)

elif audience == "policymaker":
return (
f"Create an executive summary of air quality conditions in {self.grid_name} for the period of {self.starttime} to {self.endtime}. for policy decision-making. Begin with key findings and their policy implications (50-75 words). "
f"{base_info} include the period under review."
f"Highlight critical trends: {self.monthly_data}. Diurnal patterns indicate: {self.diurnal}. "
f"Focus on: 1) Areas exceeding air quality standards, 2) Population exposure risk assessment, "
f"3) Economic implications of poor air quality. Present clear, actionable policy recommendations with expected outcomes and implementation timeframes. "
f"Include cost-benefit considerations and potential regulatory measures. Data source: AirQo monitoring network."
)
elif audience == "general public":
return (
f"{base_info} include the period under review."
f"Create a clear, easy-to-understand report about air quality in {self.grid_name} for the period of {self.starttime} to {self.endtime}. Start with a simple explanation of why air quality matters for public health. "
f"We have {self.num_sites} air quality monitors in your area. The average PM2.5 level this year is {self.annual_pm2_5_calibrated_value} µg/m³. "
f"Diurnal patterns indicate: {self.diurnal}. Monthly trends reveal: {self.monthly_data}. "
f"Explain what these numbers mean for daily activities. Include: 1) When air quality is best and worst during the day, "
f"2) Which areas have better or worse air quality, 3) Simple steps people can take to protect their health, "
f"4) How to access daily air quality updates. Use plain language and avoid technical terms. "
f"Add practical tips for reducing exposure to air pollution. Data source: AirQo monitoring network."
)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Format data before including in prompts to improve readability

Including raw data structures like lists and dictionaries directly in the prompts may result in less coherent or unreadable text in the generated reports. It's advisable to format the data into human-readable strings before incorporating them into the prompts.

For example, transform self.daily_mean_data and self.diurnal into summarized strings:

# Format daily mean data
daily_means = ', '.join([f"{item['date']}: {item['pm2_5_calibrated_value']} µg/m³" for item in self.daily_mean_data if 'date' in item and 'pm2_5_calibrated_value' in item])

# Format diurnal patterns
diurnal_patterns = ', '.join([f"{item['hour']}h: {item['pm2_5_calibrated_value']} µg/m³" for item in self.diurnal if 'hour' in item and 'pm2_5_calibrated_value' in item])

Then update the prompts:

             if audience == "researcher":
                 return (   
                     f"Generate a comprehensive air quality assessment report for {self.grid_name} for the period of {self.starttime} to {self.endtime}. Begin with a detailed introduction (100-130 words) covering the city's geographical location, climate characteristics, population density, and major pollution sources.\n"  
                     f"{base_info}\n"  
-                    f"Daily mean measurements show values ranging from {self.daily_min_pm2_5['pm2_5_calibrated_value']} to {self.daily_max_pm2_5['pm2_5_calibrated_value']} µg/m³.\n"  
-                    f"Diurnal patterns indicate peak pollution levels at {self._format_diurnal_peak()}.\n"  
+                    f"Daily mean measurements: {daily_means}.\n"  
+                    f"Diurnal patterns: {diurnal_patterns}.\n"  
                     f"Monthly trends reveal fluctuations correlated with seasonal changes.\n"  
                     "Provide a thorough analysis of spatial and temporal air quality variations, identify pollution hotspots and clean zones, examine seasonal patterns, and assess compliance with WHO guidelines. "  
                     "Conclude with actionable recommendations for air quality improvement and public health protection. Data source: AirQo monitoring network."  
                 ) 
🧰 Tools
🪛 Ruff (0.8.0)

106-106: f-string without any placeholders

Remove extraneous f prefix

(F541)


107-107: f-string without any placeholders

Remove extraneous f prefix

(F541)


108-108: f-string without any placeholders

Remove extraneous f prefix

(F541)

Comment on lines 73 to 79
if self.daily_mean_data:
self.daily_min_pm2_5 = min(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
self.daily_max_pm2_5 = max(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
else:
self.daily_min_pm2_5 = None
self.daily_max_pm2_5 = None

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Add error handling for missing 'pm2_5_calibrated_value' in daily mean data

When calculating daily_min_pm2_5 and daily_max_pm2_5, there is a potential for a KeyError if any item in self.daily_mean_data lacks the 'pm2_5_calibrated_value' key. To prevent this, introduce error handling or data validation to ensure the key exists before performing the calculations.

Apply the following changes to add a safe extraction of the values:

         if self.daily_mean_data:
-            self.daily_min_pm2_5 = min(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
-            self.daily_max_pm2_5 = max(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
+            filtered_data = [item for item in self.daily_mean_data if 'pm2_5_calibrated_value' in item]
+            if filtered_data:
+                self.daily_min_pm2_5 = min(filtered_data, key=lambda x: x['pm2_5_calibrated_value'])
+                self.daily_max_pm2_5 = max(filtered_data, key=lambda x: x['pm2_5_calibrated_value'])
+            else:
+                self.daily_min_pm2_5 = None
+                self.daily_max_pm2_5 = None
         else:
             self.daily_min_pm2_5 = None
             self.daily_max_pm2_5 = None
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
if self.daily_mean_data:
self.daily_min_pm2_5 = min(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
self.daily_max_pm2_5 = max(self.daily_mean_data, key=lambda x: x['pm2_5_calibrated_value'])
else:
self.daily_min_pm2_5 = None
self.daily_max_pm2_5 = None
if self.daily_mean_data:
filtered_data = [item for item in self.daily_mean_data if 'pm2_5_calibrated_value' in item]
if filtered_data:
self.daily_min_pm2_5 = min(filtered_data, key=lambda x: x['pm2_5_calibrated_value'])
self.daily_max_pm2_5 = max(filtered_data, key=lambda x: x['pm2_5_calibrated_value'])
else:
self.daily_min_pm2_5 = None
self.daily_max_pm2_5 = None
else:
self.daily_min_pm2_5 = None
self.daily_max_pm2_5 = None

Copy link
Contributor

Spatial changes in this PR available for preview here

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 5

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

📥 Commits

Reviewing files that changed from the base of the PR and between c14792f and e6544e0.

📒 Files selected for processing (1)
  • src/spatial/models/report_datafetcher.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.0)
src/spatial/models/report_datafetcher.py

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)


116-116: f-string without any placeholders

Remove extraneous f prefix

(F541)


117-117: f-string without any placeholders

Remove extraneous f prefix

(F541)


118-118: f-string without any placeholders

Remove extraneous f prefix

(F541)


154-154: Use of functools.lru_cache or functools.cache on methods can lead to memory leaks

(B019)

🔇 Additional comments (1)
src/spatial/models/report_datafetcher.py (1)

11-21: 🛠️ Refactor suggestion

Improve API configuration error handling and security.

The current implementation lacks proper error handling for API configuration and uses print statements instead of logging.

 # Configure API keys
-GOOGLE_API_KEY = Config.GOOGLE_API_KEY
-genai.configure(api_key=GOOGLE_API_KEY)
-hf_token = Config.HUGGING_FACE_TOKEN
+try:
+    GOOGLE_API_KEY = Config.GOOGLE_API_KEY
+    if not GOOGLE_API_KEY:
+        raise ValueError("GOOGLE_API_KEY is not set")
+    genai.configure(api_key=GOOGLE_API_KEY)
+
+    hf_token = Config.HUGGING_FACE_TOKEN
+    if not hf_token:
+        logger.warning("HUGGING_FACE_TOKEN is not set")
+    else:
+        login(hf_token)
+except Exception as e:
+    logger.error(f"Failed to configure API keys: {e}")
+    raise

Likely invalid or redundant comment.

+ f"Generate a comprehensive air quality assessment report for {self.grid_name} for the period of {self.starttime} to {self.endtime}. Begin with a detailed introduction (100-130 words) covering the city's geographical location, climate characteristics, population density, and major pollution sources.\n"
+ f"{base_info}\n"
+ f"Daily mean measurements show values ranging from {self.daily_min_pm2_5['pm2_5_calibrated_value']} to {self.daily_max_pm2_5['pm2_5_calibrated_value']} µg/m³.\n"
+ f"Diurnal patterns indicate peak pollution levels at {self._format_diurnal_peak()}.\n"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Define missing method _format_diurnal_peak().

The method _format_diurnal_peak() is called but not defined in the class.

Add the following implementation:

def _format_diurnal_peak(self):
    """Format the diurnal peak information."""
    if not self.diurnal:
        return "N/A"
    try:
        peak_data = max(self.diurnal, key=lambda x: x['pm2_5_calibrated_value'])
        return f"{peak_data['hour']}:00 hr with {peak_data['pm2_5_calibrated_value']} µg/m³"
    except (KeyError, ValueError) as e:
        logger.error(f"Error formatting diurnal peak: {e}")
        return "N/A"

Comment on lines +1 to +8
import requests
import openai
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from configure import Config
import google.generativeai as genai
import logging
from functools import lru_cache
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Clean up imports and configure logging properly.

  1. Remove unused imports from the transformers library
  2. Add logging configuration
 import requests
 import openai
-from transformers import AutoModelForCausalLM, AutoTokenizer
 from huggingface_hub import login
 from configure import Config
 import google.generativeai as genai 
 import logging
 from functools import lru_cache
+
+# Configure logging
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
import requests
import openai
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from configure import Config
import google.generativeai as genai
import logging
from functools import lru_cache
import requests
import openai
from huggingface_hub import login
from configure import Config
import google.generativeai as genai
import logging
from functools import lru_cache
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
🧰 Tools
🪛 Ruff (0.8.0)

3-3: transformers.AutoModelForCausalLM imported but unused

Remove unused import

(F401)


3-3: transformers.AutoTokenizer imported but unused

Remove unused import

(F401)

Comment on lines +51 to +94
class AirQualityReport:
def __init__(self, data):
self.data = data
self.grid_name = data.get('airquality', {}).get('sites', {}).get('grid name', [None])
self.annual_data = data.get('airquality', {}).get('annual_pm', [None])[0]
self.daily_mean_data = data.get('airquality', {}).get('daily_mean_pm', [])
self.diurnal = data.get('airquality', {}).get('diurnal', [])
self.monthly_data = data.get('airquality', {}).get('site_monthly_mean_pm', [])
self.monthly_name_data = data.get('airquality', {}).get('pm_by_month_name', [])
self.site_annual_mean_pm = data.get('airquality', {}).get('site_annual_mean_pm', [])
self.site_mean_pm = data.get('airquality', {}).get('site_mean_pm', [])
main_site_info = self.monthly_data[0] if self.monthly_data else {}
self.main_site = main_site_info.get('site_name')
self.site_names = [item.get('site_name', None) for item in self.data.get('airquality', {}).get('site_annual_mean_pm', [])]
self.site_latitude = main_site_info.get('site_latitude')
self.site_longitude = main_site_info.get('site_longitude')
self.num_sites = data.get('airquality', {}).get('sites', {}).get('number_of_sites')
self.starttime = data.get('airquality', {}).get('period', {}).get('startTime', '')[:10]
self.endtime = data.get('airquality', {}).get('period', {}).get('endTime', '')[:10]

self.annual_pm2_5_calibrated_value = self.annual_data.get("pm2_5_calibrated_value")
self.annual_pm10_calibrated_value = self.annual_data.get("pm10_calibrated_value")

# Finding the minimum and maximum values
if self.daily_mean_data:
filtered_data = [
item for item in self.daily_mean_data
if 'pm2_5_calibrated_value' in item and isinstance(item['pm2_5_calibrated_value'], (int, float))
]
if filtered_data:
self.daily_min_pm2_5 = min(filtered_data, key=lambda x: x['pm2_5_calibrated_value'])
self.daily_max_pm2_5 = max(filtered_data, key=lambda x: x['pm2_5_calibrated_value'])
else:
self.daily_min_pm2_5 = None
self.daily_max_pm2_5 = None
else:
self.daily_min_pm2_5 = None
self.daily_max_pm2_5 = None


# Initialize models once in the constructor
self.gemini_model = genai.GenerativeModel('gemini-pro')
openai.api_key = Config.OPENAI_API_KEY

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Add proper data validation and error handling in initialization.

The class initialization needs several improvements:

  1. Validate input data structure
  2. Handle potential KeyErrors
  3. Add error handling for model initialization
+    def __validate_data(self, data: dict) -> None:
+        if not isinstance(data, dict):
+            raise ValueError("Input data must be a dictionary")
+        if 'airquality' not in data:
+            raise ValueError("Missing 'airquality' key in data")

     def __init__(self, data): 
+        self.__validate_data(data)
         self.data = data
-        self.grid_name = data.get('airquality', {}).get('sites', {}).get('grid name', [None])
+        self.grid_name = data.get('airquality', {}).get('sites', {}).get('grid name', ['Unknown'])[0]

         # Initialize models with error handling
+        try:
             self.gemini_model = genai.GenerativeModel('gemini-pro')
             openai.api_key = Config.OPENAI_API_KEY
+            if not openai.api_key:
+                raise ValueError("OpenAI API key is not set")
+        except Exception as e:
+            logger.error(f"Failed to initialize AI models: {e}")
+            raise

Committable suggestion skipped: line range outside the PR's diff.

Comment on lines +154 to +176
@lru_cache(maxsize=64) # Cache up to 64 most recent reports
def generate_report_with_customised_prompt_gemini(self, custom_prompt):
"""
Generate an air quality report using a customised user-provided prompt.
"""
base_info = self._prepare_base_info()
full_prompt = (

f"{base_info} include the period under review."
f"diurnal patterns indicate: {self.diurnal}. "
f"number of sites or devices or airqo binos: {self.num_sites}. "
f"{self.daily_mean_data}"
f"site mean{self.site_mean_pm}"
f" daily {self.daily_mean_data}"
f"{custom_prompt}"
)
try:
response = self.gemini_model.generate_content(full_prompt)
gemini_output = response.text
return self._prepare_customised_report_json(gemini_output)
except Exception as e:
print(f"Error: {e}")

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Improve error handling and caching in report generation.

  1. Using lru_cache on methods can lead to memory leaks
  2. Error handling needs improvement
-    @lru_cache(maxsize=64)  # Cache up to 64 most recent reports
     def generate_report_with_customised_prompt_gemini(self, custom_prompt):
         """
         Generate an air quality report using a customised user-provided prompt.
         """
         base_info = self._prepare_base_info() 
         full_prompt = (
             f"{base_info} include the period under review."
             f"diurnal patterns indicate: {self.diurnal}. "
             f"number of sites or devices or airqo binos: {self.num_sites}. "
             f"{custom_prompt}" 
         )
         try:
             response = self.gemini_model.generate_content(full_prompt)
             gemini_output = response.text
             return self._prepare_customised_report_json(gemini_output)
         except Exception as e:
-            print(f"Error: {e}")
+            logger.error(f"Failed to generate report: {e}")
+            return None
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
@lru_cache(maxsize=64) # Cache up to 64 most recent reports
def generate_report_with_customised_prompt_gemini(self, custom_prompt):
"""
Generate an air quality report using a customised user-provided prompt.
"""
base_info = self._prepare_base_info()
full_prompt = (
f"{base_info} include the period under review."
f"diurnal patterns indicate: {self.diurnal}. "
f"number of sites or devices or airqo binos: {self.num_sites}. "
f"{self.daily_mean_data}"
f"site mean{self.site_mean_pm}"
f" daily {self.daily_mean_data}"
f"{custom_prompt}"
)
try:
response = self.gemini_model.generate_content(full_prompt)
gemini_output = response.text
return self._prepare_customised_report_json(gemini_output)
except Exception as e:
print(f"Error: {e}")
def generate_report_with_customised_prompt_gemini(self, custom_prompt):
"""
Generate an air quality report using a customised user-provided prompt.
"""
base_info = self._prepare_base_info()
full_prompt = (
f"{base_info} include the period under review."
f"diurnal patterns indicate: {self.diurnal}. "
f"number of sites or devices or airqo binos: {self.num_sites}. "
f"{custom_prompt}"
)
try:
response = self.gemini_model.generate_content(full_prompt)
gemini_output = response.text
return self._prepare_customised_report_json(gemini_output)
except Exception as e:
logger.error(f"Failed to generate report: {e}")
return None
🧰 Tools
🪛 Ruff (0.8.0)

154-154: Use of functools.lru_cache or functools.cache on methods can lead to memory leaks

(B019)

Comment on lines +22 to +49
class DataFetcher:
@staticmethod
@lru_cache(maxsize=128) # Cache up to 128 most recent queries
def fetch_air_quality_data_a(grid_id, start_time, end_time):
token = Config.AIRQO_API_TOKEN
analytics_url = Config.ANALTICS_URL
if token is None:
print("Error: AIRQO_API_TOKEN environment variable is not set.")
return None

url= f"{analytics_url}?token={token}"
payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}

try:
response = requests.post(url, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
logging.error(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as req_err:
print(f"Request error occurred: {req_err}")
logging.error(f"Request error occurred: {req_err}")
except ValueError as json_err:
print(f"JSON decoding error: {json_err}")
logging.error(f"JSON decoding error: {json_err}")

return None
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Enhance security and reliability of data fetching.

Several improvements needed:

  1. Move token from URL to headers
  2. Use consistent logging
  3. Add request timeout
  4. Add type hints
 @staticmethod
 @lru_cache(maxsize=128)  # Cache up to 128 most recent queries
-def fetch_air_quality_data_a(grid_id, start_time, end_time):
+def fetch_air_quality_data_a(grid_id: str, start_time: str, end_time: str) -> dict | None:
     token = Config.AIRQO_API_TOKEN  
     analytics_url = Config.ANALTICS_URL
     if token is None:
-        print("Error: AIRQO_API_TOKEN environment variable is not set.")
+        logger.error("AIRQO_API_TOKEN environment variable is not set.")
         return None

-    url= f"{analytics_url}?token={token}"
+    url = analytics_url
     payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
+    headers = {"Authorization": f"Bearer {token}"}

     try:
-        response = requests.post(url, json=payload)
+        response = requests.post(url, json=payload, headers=headers, timeout=30)
         response.raise_for_status()
         return response.json()
     except requests.exceptions.HTTPError as http_err:
-        print(f"HTTP error occurred: {http_err}")
         logging.error(f"HTTP error occurred: {http_err}")
     except requests.exceptions.RequestException as req_err:
-        print(f"Request error occurred: {req_err}")
         logging.error(f"Request error occurred: {req_err}")
     except ValueError as json_err:
-        print(f"JSON decoding error: {json_err}")
         logging.error(f"JSON decoding error: {json_err}")
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
class DataFetcher:
@staticmethod
@lru_cache(maxsize=128) # Cache up to 128 most recent queries
def fetch_air_quality_data_a(grid_id, start_time, end_time):
token = Config.AIRQO_API_TOKEN
analytics_url = Config.ANALTICS_URL
if token is None:
print("Error: AIRQO_API_TOKEN environment variable is not set.")
return None
url= f"{analytics_url}?token={token}"
payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
try:
response = requests.post(url, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
logging.error(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as req_err:
print(f"Request error occurred: {req_err}")
logging.error(f"Request error occurred: {req_err}")
except ValueError as json_err:
print(f"JSON decoding error: {json_err}")
logging.error(f"JSON decoding error: {json_err}")
return None
class DataFetcher:
@staticmethod
@lru_cache(maxsize=128) # Cache up to 128 most recent queries
def fetch_air_quality_data_a(grid_id: str, start_time: str, end_time: str) -> dict | None:
token = Config.AIRQO_API_TOKEN
analytics_url = Config.ANALTICS_URL
if token is None:
logger.error("AIRQO_API_TOKEN environment variable is not set.")
return None
url = analytics_url
payload = {"grid_id": grid_id, "start_time": start_time, "end_time": end_time}
headers = {"Authorization": f"Bearer {token}"}
try:
response = requests.post(url, json=payload, headers=headers, timeout=30)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as http_err:
logging.error(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as req_err:
logging.error(f"Request error occurred: {req_err}")
except ValueError as json_err:
logging.error(f"JSON decoding error: {json_err}")
return None

Copy link
Contributor

Spatial changes in this PR available for preview here

@wabinyai wabinyai requested a review from Codebmk November 27, 2024 07:32
Copy link
Contributor

@Baalmart Baalmart left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you @wabinyai . Thanks for cooking! :)

@Baalmart Baalmart merged commit 4135652 into staging Nov 27, 2024
51 of 52 checks passed
@Baalmart Baalmart deleted the reporting-with-llm branch November 27, 2024 09:02
@Baalmart Baalmart mentioned this pull request Nov 27, 2024
1 task
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants