-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3b217b9
commit de9315d
Showing
2 changed files
with
331 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import torch | ||
|
||
from xuanpolicy.torch.agents import * | ||
|
||
|
||
class MAPPO_Agents(MARLAgents): | ||
def __init__(self, | ||
config: Namespace, | ||
envs: DummyVecEnv_Pettingzoo, | ||
device: Optional[Union[int, str, torch.device]] = None): | ||
self.gamma = config.gamma | ||
self.n_envs = envs.num_envs | ||
self.n_size = config.n_size | ||
self.n_epoch = config.n_epoch | ||
self.n_minibatch = config.n_minibatch | ||
if config.state_space is not None: | ||
config.dim_state, state_shape = config.state_space.shape[0], config.state_space.shape | ||
else: | ||
config.dim_state, state_shape = None, None | ||
|
||
input_representation = get_repre_in(config) | ||
self.use_recurrent = config.use_recurrent | ||
self.use_global_state = config.use_global_state | ||
# create representation for actor | ||
kwargs_rnn = {"N_recurrent_layers": config.N_recurrent_layers, | ||
"dropout": config.dropout, | ||
"rnn": config.rnn} if self.use_recurrent else {} | ||
representation = REGISTRY_Representation[config.representation](*input_representation, **kwargs_rnn) | ||
# create representation for critic | ||
input_representation[0] = (config.dim_state,) if self.use_global_state else (config.dim_obs * config.n_agents,) | ||
representation_critic = REGISTRY_Representation[config.representation](*input_representation, **kwargs_rnn) | ||
# create policy | ||
input_policy = get_policy_in_marl(config, (representation, representation_critic)) | ||
policy = REGISTRY_Policy[config.policy](*input_policy, | ||
use_recurrent=config.use_recurrent, | ||
rnn=config.rnn, | ||
gain=config.gain) | ||
optimizer = torch.optim.Adam(policy.parameters(), | ||
lr=config.learning_rate, eps=1e-5, | ||
weight_decay=config.weight_decay) | ||
self.observation_space = envs.observation_space | ||
self.action_space = envs.action_space | ||
self.auxiliary_info_shape = {} | ||
|
||
buffer = MARL_OnPolicyBuffer_RNN if self.use_recurrent else MARL_OnPolicyBuffer | ||
input_buffer = (config.n_agents, config.state_space.shape, config.obs_shape, config.act_shape, config.rew_shape, | ||
config.done_shape, envs.num_envs, config.n_size, | ||
config.use_gae, config.use_advnorm, config.gamma, config.gae_lambda) | ||
memory = buffer(*input_buffer, max_episode_length=envs.max_episode_length, dim_act=config.dim_act) | ||
self.buffer_size = memory.buffer_size | ||
self.batch_size = self.buffer_size // self.n_minibatch | ||
|
||
learner = MAPPO_Clip_Learner(config, policy, optimizer, None, | ||
config.device, config.model_dir, config.gamma) | ||
super(MAPPO_Agents, self).__init__(config, envs, policy, memory, learner, device, | ||
config.log_dir, config.model_dir) | ||
self.share_values = True if config.rew_shape[0] == 1 else False | ||
self.on_policy = True | ||
|
||
def act(self, obs_n, *rnn_hidden, avail_actions=None, state=None, test_mode=False): | ||
batch_size = len(obs_n) | ||
agents_id = torch.eye(self.n_agents).unsqueeze(0).expand(batch_size, -1, -1).to(self.device) | ||
obs_in = torch.Tensor(obs_n).view([batch_size, self.n_agents, -1]).to(self.device) | ||
if self.use_recurrent: | ||
batch_agents = batch_size * self.n_agents | ||
hidden_state, dists = self.policy(obs_in.view(batch_agents, 1, -1), | ||
agents_id.view(batch_agents, 1, -1), | ||
*rnn_hidden, | ||
avail_actions=avail_actions.reshape(batch_agents, 1, -1)) | ||
actions = dists.stochastic_sample() | ||
log_pi_a = dists.log_prob(actions).reshape(batch_size, self.n_agents) | ||
actions = actions.reshape(batch_size, self.n_agents) | ||
else: | ||
hidden_state, dists = self.policy(obs_in, agents_id, avail_actions=avail_actions) | ||
actions = dists.stochastic_sample() | ||
log_pi_a = dists.log_prob(actions) | ||
return hidden_state, actions.detach().cpu().numpy(), log_pi_a.detach().cpu().numpy() | ||
|
||
def values(self, obs_n, *rnn_hidden, state=None): | ||
batch_size = len(obs_n) | ||
agents_id = torch.eye(self.n_agents).unsqueeze(0).expand(batch_size, -1, -1).to(self.device) | ||
# build critic input | ||
if self.use_global_state: | ||
state = torch.Tensor(state).unsqueeze(1).to(self.device) | ||
critic_in = state.expand(-1, self.n_agents, -1) | ||
else: | ||
critic_in = torch.Tensor(obs_n).view([batch_size, 1, -1]).to(self.device) | ||
critic_in = critic_in.expand(-1, self.n_agents, -1) | ||
# get critic values | ||
if self.use_recurrent: | ||
hidden_state, values_n = self.policy.get_values(critic_in.unsqueeze(2), # add a sequence length axis. | ||
agents_id.unsqueeze(2), | ||
*rnn_hidden) | ||
values_n = values_n.squeeze(2) | ||
else: | ||
hidden_state, values_n = self.policy.get_values(critic_in, agents_id) | ||
|
||
return hidden_state, values_n.detach().cpu().numpy() | ||
|
||
def train(self, i_step): | ||
if self.memory.full: | ||
info_train = {} | ||
indexes = np.arange(self.buffer_size) | ||
for _ in range(self.n_epoch): | ||
np.random.shuffle(indexes) | ||
for start in range(0, self.buffer_size, self.batch_size): | ||
end = start + self.batch_size | ||
sample_idx = indexes[start:end] | ||
sample = self.memory.sample(sample_idx) | ||
if self.use_recurrent: | ||
info_train = self.learner.update_recurrent(sample) | ||
else: | ||
info_train = self.learner.update(sample) | ||
self.learner.lr_decay(i_step) | ||
self.memory.clear() | ||
return info_train | ||
else: | ||
return {} |
213 changes: 213 additions & 0 deletions
213
xuanpolicy/torch/learners/multi_agent_rl/ippo_learner.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
""" | ||
Multi-Agent Proximal Policy Optimization (MAPPO) | ||
Paper link: | ||
https://arxiv.org/pdf/2103.01955.pdf | ||
Implementation: Pytorch | ||
""" | ||
from xuanpolicy.torch.learners import * | ||
from xuanpolicy.torch.utils.value_norm import ValueNorm | ||
from xuanpolicy.torch.utils.operations import update_linear_decay | ||
|
||
|
||
class MAPPO_Clip_Learner(LearnerMAS): | ||
def __init__(self, | ||
config: Namespace, | ||
policy: nn.Module, | ||
optimizer: torch.optim.Optimizer, | ||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, | ||
device: Optional[Union[int, str, torch.device]] = None, | ||
model_dir: str = "./", | ||
gamma: float = 0.99, | ||
): | ||
self.gamma = gamma | ||
self.clip_range = config.clip_range | ||
self.use_linear_lr_decay = config.use_linear_lr_decay | ||
self.use_grad_norm, self.max_grad_norm = config.use_grad_norm, config.max_grad_norm | ||
self.use_value_clip, self.value_clip_range = config.use_value_clip, config.value_clip_range | ||
self.use_huber_loss, self.huber_delta = config.use_huber_loss, config.huber_delta | ||
self.use_value_norm = config.use_value_norm | ||
self.use_global_state = config.use_global_state | ||
self.vf_coef, self.ent_coef = config.vf_coef, config.ent_coef | ||
self.mse_loss = nn.MSELoss() | ||
self.huber_loss = nn.HuberLoss(reduction="none", delta=self.huber_delta) | ||
super(MAPPO_Clip_Learner, self).__init__(config, policy, optimizer, scheduler, device, model_dir) | ||
if self.use_value_norm: | ||
self.value_normalizer = ValueNorm(1).to(device) | ||
else: | ||
self.value_normalizer = None | ||
self.lr = config.learning_rate | ||
self.end_factor_lr_decay = config.end_factor_lr_decay | ||
|
||
def lr_decay(self, i_step): | ||
if self.use_linear_lr_decay: | ||
update_linear_decay(self.optimizer, i_step, self.running_steps, self.lr, self.end_factor_lr_decay) | ||
|
||
def update(self, sample): | ||
info = {} | ||
self.iterations += 1 | ||
state = torch.Tensor(sample['state']).to(self.device) | ||
obs = torch.Tensor(sample['obs']).to(self.device) | ||
actions = torch.Tensor(sample['actions']).to(self.device) | ||
values = torch.Tensor(sample['values']).to(self.device) | ||
returns = torch.Tensor(sample['returns']).to(self.device) | ||
advantages = torch.Tensor(sample['advantages']).to(self.device) | ||
log_pi_old = torch.Tensor(sample['log_pi_old']).to(self.device) | ||
agent_mask = torch.Tensor(sample['agent_mask']).float().reshape(-1, self.n_agents, 1).to(self.device) | ||
batch_size = obs.shape[0] | ||
IDs = torch.eye(self.n_agents).unsqueeze(0).expand(batch_size, -1, -1).to(self.device) | ||
|
||
# actor loss | ||
_, pi_dist = self.policy(obs, IDs) | ||
log_pi = pi_dist.log_prob(actions) | ||
ratio = torch.exp(log_pi - log_pi_old).reshape(batch_size, self.n_agents, 1) | ||
advantages_mask = advantages.detach() * agent_mask | ||
surrogate1 = ratio * advantages_mask | ||
surrogate2 = torch.clip(ratio, 1 - self.clip_range, 1 + self.clip_range) * advantages_mask | ||
loss_a = -torch.sum(torch.min(surrogate1, surrogate2), dim=-2, keepdim=True).mean() | ||
|
||
# entropy loss | ||
entropy = pi_dist.entropy().reshape(agent_mask.shape) * agent_mask | ||
loss_e = entropy.mean() | ||
|
||
# critic loss | ||
critic_in = torch.Tensor(obs).reshape([batch_size, 1, -1]).to(self.device) | ||
critic_in = critic_in.expand(-1, self.n_agents, -1) | ||
_, value_pred = self.policy.get_values(critic_in, IDs) | ||
value_pred = value_pred | ||
value_target = returns | ||
if self.use_value_clip: | ||
value_clipped = values + (value_pred - values).clamp(-self.value_clip_range, self.value_clip_range) | ||
if self.use_huber_loss: | ||
loss_v = self.huber_loss(value_pred, value_target) | ||
loss_v_clipped = self.huber_loss(value_clipped, value_target) | ||
else: | ||
loss_v = (value_pred - value_target) ** 2 | ||
loss_v_clipped = (value_clipped - value_target) ** 2 | ||
loss_c = torch.max(loss_v, loss_v_clipped) * agent_mask | ||
loss_c = loss_c.sum() / agent_mask.sum() | ||
else: | ||
if self.use_huber_loss: | ||
loss_v = self.huber_loss(value_pred, value_target) * agent_mask | ||
else: | ||
loss_v = ((value_pred - value_target) ** 2) * agent_mask | ||
loss_c = loss_v.sum() / agent_mask.sum() | ||
|
||
loss = loss_a + self.vf_coef * loss_c - self.ent_coef * loss_e | ||
self.optimizer.zero_grad() | ||
loss.backward() | ||
if self.use_grad_norm: | ||
grad_norm = torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) | ||
info["gradient_norm"] = grad_norm.item() | ||
self.optimizer.step() | ||
if self.scheduler is not None: | ||
self.scheduler.step() | ||
|
||
# Logger | ||
lr = self.optimizer.state_dict()['param_groups'][0]['lr'] | ||
|
||
info.update({ | ||
"learning_rate": lr, | ||
"actor_loss": loss_a.item(), | ||
"critic_loss": loss_c.item(), | ||
"entropy": loss_e.item(), | ||
"loss": loss.item(), | ||
"predict_value": value_pred.mean().item() | ||
}) | ||
|
||
return info | ||
|
||
def update_recurrent(self, sample): | ||
info = {} | ||
self.iterations += 1 | ||
state = torch.Tensor(sample['state']).to(self.device) | ||
if self.use_global_state: | ||
state = state.unsqueeze(1).expand(-1, self.n_agents, -1, -1) | ||
obs = torch.Tensor(sample['obs']).to(self.device) | ||
actions = torch.Tensor(sample['actions']).to(self.device) | ||
values = torch.Tensor(sample['values']).to(self.device) | ||
returns = torch.Tensor(sample['returns']).to(self.device) | ||
advantages = torch.Tensor(sample['advantages']).to(self.device) | ||
log_pi_old = torch.Tensor(sample['log_pi_old']).to(self.device) | ||
avail_actions = torch.Tensor(sample['avail_actions']).float().to(self.device) | ||
filled = torch.Tensor(sample['filled']).float().to(self.device) | ||
batch_size = obs.shape[0] | ||
episode_length = actions.shape[2] | ||
IDs = torch.eye(self.n_agents).unsqueeze(1).unsqueeze(0).expand(batch_size, -1, episode_length + 1, -1).to( | ||
self.device) | ||
|
||
# actor loss | ||
rnn_hidden_actor = self.policy.representation.init_hidden(batch_size * self.n_agents) | ||
_, pi_dist = self.policy(obs[:, :, :-1].reshape(-1, episode_length, self.dim_obs), | ||
IDs[:, :, :-1].reshape(-1, episode_length, self.n_agents), | ||
*rnn_hidden_actor, | ||
avail_actions=avail_actions[:, :, :-1].reshape(-1, episode_length, self.dim_act)) | ||
log_pi = pi_dist.log_prob(actions.reshape(-1, episode_length)).reshape(batch_size, self.n_agents, episode_length) | ||
ratio = torch.exp(log_pi - log_pi_old).unsqueeze(-1) | ||
filled_n = filled.unsqueeze(1).expand(batch_size, self.n_agents, episode_length, 1) | ||
surrogate1 = ratio * advantages | ||
surrogate2 = torch.clip(ratio, 1 - self.clip_range, 1 + self.clip_range) * advantages | ||
loss_a = -(torch.min(surrogate1, surrogate2) * filled_n).sum() / filled_n.sum() | ||
|
||
# entropy loss | ||
entropy = pi_dist.entropy().reshape(batch_size, self.n_agents, episode_length, 1) | ||
entropy = entropy * filled_n | ||
loss_e = entropy.sum() / filled_n.sum() | ||
|
||
# critic loss | ||
rnn_hidden_critic = self.policy.representation_critic.init_hidden(batch_size * self.n_agents) | ||
if self.use_global_state: | ||
_, value_pred = self.policy.get_values(state[:, :, :-1], IDs[:, :, :-1], *rnn_hidden_critic) | ||
else: | ||
critic_in = obs[:, :, :-1].transpose(1, 2).reshape(batch_size, episode_length, -1) | ||
critic_in = critic_in.unsqueeze(1).expand(-1, self.n_agents, -1, -1) | ||
_, value_pred = self.policy.get_values(critic_in, IDs[:, :, :-1], *rnn_hidden_critic) | ||
value_target = returns.reshape(-1, 1) | ||
values = values.reshape(-1, 1) | ||
value_pred = value_pred.reshape(-1, 1) | ||
filled_all = filled_n.reshape(-1, 1) | ||
if self.use_value_clip: | ||
value_clipped = values + (value_pred - values).clamp(-self.value_clip_range, self.value_clip_range) | ||
if self.use_value_norm: | ||
self.value_normalizer.update(value_target) | ||
value_target = self.value_normalizer.normalize(value_target) | ||
if self.use_huber_loss: | ||
loss_v = self.huber_loss(value_pred, value_target) | ||
loss_v_clipped = self.huber_loss(value_clipped, value_target) | ||
else: | ||
loss_v = (value_pred - value_target) ** 2 | ||
loss_v_clipped = (value_clipped - value_target) ** 2 | ||
loss_c = torch.max(loss_v, loss_v_clipped) * filled_all | ||
loss_c = loss_c.sum() / filled_all.sum() | ||
else: | ||
if self.use_value_norm: | ||
self.value_normalizer.update(value_target) | ||
value_pred = self.value_normalizer.normalize(value_pred) | ||
if self.use_huber_loss: | ||
loss_v = self.huber_loss(value_pred, value_target) | ||
else: | ||
loss_v = (value_pred - value_target) ** 2 | ||
loss_c = (loss_v * filled_all).sum() / filled_all.sum() | ||
|
||
loss = loss_a + self.vf_coef * loss_c - self.ent_coef * loss_e | ||
self.optimizer.zero_grad() | ||
loss.backward() | ||
if self.use_grad_norm: | ||
grad_norm = torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm) | ||
info["gradient_norm"] = grad_norm.item() | ||
self.optimizer.step() | ||
if self.scheduler is not None: | ||
self.scheduler.step() | ||
|
||
# Logger | ||
lr = self.optimizer.state_dict()['param_groups'][0]['lr'] | ||
|
||
info.update({ | ||
"learning_rate": lr, | ||
"actor_loss": loss_a.item(), | ||
"critic_loss": loss_c.item(), | ||
"entropy": loss_e.item(), | ||
"loss": loss.item(), | ||
"predict_value": value_pred.mean().item() | ||
}) | ||
|
||
return info |