Skip to content

Commit

Permalink
documentation: api: value1
Browse files Browse the repository at this point in the history
  • Loading branch information
F-coder1857 committed Dec 1, 2023
1 parent 5b496d1 commit b03a2dc
Showing 1 changed file with 177 additions and 0 deletions.
177 changes: 177 additions & 0 deletions docs/source/documents/api/utils/value_norm.rst
Original file line number Diff line number Diff line change
@@ -1,2 +1,179 @@
ValueNorm
========================================
Runner_SC2
==============================================

xxxxxx.

.. raw:: html

<br><hr>

**PyTorch:**

.. py:class::
xuance.torch.utils.value_norm.ValueNorm(input_shape, norm_axes, beta, per_element_update, epsilon)

:param input_shape: xxxxxx.
:type input_shape: xxxxxx
:param norm_axes: xxxxxx.
:type norm_axes: xxxxxx
:param beta: xxxxxx.
:type beta: xxxxxx
:param per_element_update: xxxxxx.
:type per_element_update: xxxxxx
:param epsilon: xxxxxx.
:type epsilon: xxxxxx

.. py:function::
xuance.torch.utils.value_norm.ValueNorm.reset_parameters()

xxxxxx.

.. py:function::
xuance.torch.utils.value_norm.ValueNorm.running_mean_var()

xxxxxx.

:return: xxxxxx.
:rtype: xxxxxx

.. py:function::
xuance.torch.utils.value_norm.ValueNorm.update(input_vector)

xxxxxx.

:param input_vector: xxxxxx.
:type input_vector: xxxxxx

.. py:function::
xuance.torch.utils.value_norm.ValueNorm.normalize(input_vector)

xxxxxx.

:param input_vector: xxxxxx.
:type input_vector: xxxxxx
:return: xxxxxx.
:rtype: xxxxxx

.. py:function::
xuance.torch.utils.value_norm.ValueNorm.denormalize(input_vector)

xxxxxx.

:param input_vector: xxxxxx.
:type input_vector: xxxxxx
:return: xxxxxx.
:rtype: xxxxxx

.. raw:: html

<br><hr>

**TensorFlow:**

.. raw:: html

<br><hr>

**MindSpore:**

.. raw:: html

<br><hr>

Source Code
-----------------

.. tabs::

.. group-tab:: PyTorch

.. code-block:: python
import numpy as np
import torch
import torch.nn as nn
class ValueNorm(nn.Module):
""" Normalize a vector of observations - across the first norm_axes dimensions"""
def __init__(self, input_shape, norm_axes=1, beta=0.99999, per_element_update=False, epsilon=1e-5):
super(ValueNorm, self).__init__()
self.input_shape = input_shape
self.norm_axes = norm_axes
self.epsilon = epsilon
self.beta = beta
self.per_element_update = per_element_update
self.running_mean = nn.Parameter(torch.zeros(input_shape), requires_grad=False)
self.running_mean_sq = nn.Parameter(torch.zeros(input_shape), requires_grad=False)
self.debiasing_term = nn.Parameter(torch.tensor(0.0), requires_grad=False)
self.reset_parameters()
def reset_parameters(self):
self.running_mean.zero_()
self.running_mean_sq.zero_()
self.debiasing_term.zero_()
def running_mean_var(self):
debiased_mean = self.running_mean / self.debiasing_term.clamp(min=self.epsilon)
debiased_mean_sq = self.running_mean_sq / self.debiasing_term.clamp(min=self.epsilon)
debiased_var = (debiased_mean_sq - debiased_mean ** 2).clamp(min=1e-2)
return debiased_mean, debiased_var
@torch.no_grad()
def update(self, input_vector):
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector.to(self.running_mean.device) # not elegant, but works in most cases
batch_mean = input_vector.mean(dim=tuple(range(self.norm_axes)))
batch_sq_mean = (input_vector ** 2).mean(dim=tuple(range(self.norm_axes)))
if self.per_element_update:
batch_size = np.prod(input_vector.size()[:self.norm_axes])
weight = self.beta ** batch_size
else:
weight = self.beta
self.running_mean.mul_(weight).add_(batch_mean * (1.0 - weight))
self.running_mean_sq.mul_(weight).add_(batch_sq_mean * (1.0 - weight))
self.debiasing_term.mul_(weight).add_(1.0 * (1.0 - weight))
def normalize(self, input_vector):
# Make sure input is float32
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector.to(self.running_mean.device) # not elegant, but works in most cases
mean, var = self.running_mean_var()
out = (input_vector - mean[(None,) * self.norm_axes]) / torch.sqrt(var)[(None,) * self.norm_axes]
return out
def denormalize(self, input_vector):
""" Transform normalized data back into original distribution """
if type(input_vector) == np.ndarray:
input_vector = torch.from_numpy(input_vector)
input_vector = input_vector.to(self.running_mean.device) # not elegant, but works in most cases
mean, var = self.running_mean_var()
out = input_vector * torch.sqrt(var)[(None,) * self.norm_axes] + mean[(None,) * self.norm_axes]
out = out.cpu().numpy()
return out
.. group-tab:: TensorFlow

.. code-block:: python
.. group-tab:: MindSpore

.. code-block:: python

0 comments on commit b03a2dc

Please sign in to comment.